Fungal infections and, in particular, those caused by species of the Candida genus, are growing at an alarming rate and have high associated rates of mortality and morbidity. These infections, generally referred as candidiasis, range from common superficial rushes caused by an overgrowth of the yeasts in mucosal surfaces to life-threatening disseminated mycoses. The success of currently used antifungal drugs to treat candidiasis is being endangered by the continuous emergence of resistant strains, specially among non-albicans Candida species. In this review article, the mechanisms of action of currently used antifungals, with emphasis on the mechanisms of resistance reported in clinical isolates, are reviewed. Novel approaches being taken to successfully inhibit growth of pathogenic Candida species, in particular those based on the exploration of natural or synthetic chemicals or on the activity of live probiotics, are also reviewed. It is expected that these novel approaches, either used alone or in combination with traditional antifungals, may contribute to foster the identification of novel anti-Candida therapies.
The relevance of C. glabrata as a human pathogen is linked with its poor susceptibility to azoles as well as its extreme genomic plasticity that allows the rapid acquisition of resistance. Extensive characterization of azole-resistant C. glabrata strains unveiled the central role of the transcriptional regulator CgPdr1 in the resistance phenotype, with many strains encoding hyperactive (or gain-of-function; GOF) CgPdr1 alleles. Large scale profiling of a collection of clinical C. glabrata isolates recovered in hospitals of the Lisbon area, in Portugal, led to the identification of 11 strains exhibiting resistance to fluconazole and voriconazole, while 2 were only resistant to fluconazole. Among these strains, 10 were found to encode alleles of the CgPDR1 gene harbouring multiple non-synonymous SNPs that were not found in the alleles encoded by susceptible strains, including K274Q, I392M and I803T not previously described as GOF mutations. The isolates encoding these alleles were found to over-express several CgPdr1 target genes including the azole efflux pump CgCDR1 sustaining the idea that these represent new gain-of-function CgPdr1 alleles. Only one of the identified azole-resistant strains was found to encode a CgPDR1 allele fully identical to the one encoded by susceptible strains. To better understand the resistance phenotype of this strain, its transcriptome was compared with the one of a susceptible strain and of strains encoding CgPdr1 GOF alleles. The results of this comparative transcriptomic analysis will be discussed shedding light into the different azole-resistance mechanisms evolved by C. glabrata, including those independent of CgPdr1 GOF strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.