We present the results of a field theory simulation of networks of strings in the Abelian Higgs model. Starting from a random initial configuration we show that the resulting vortex tangle approaches a self-similar regime in which the length density of lines of zeros of φ reduces as t −2 . We demonstrate that the network loses energy directly into scalar and gauge radiation. These results support a recent claim that particle production, and not gravitational radiation, is the dominant energy loss mechanism for cosmic strings. This means that cosmic strings in Grand Unified Theories are severely constrained by high energy cosmic ray fluxes: either they are ruled out, or an implausibly small fraction of their energy ends up in quarks and leptons.
We report the first large scale numerical study of the dynamics of the second
order phase transition of a U(1) $\lambda \phi^4$ theory in three spatial
dimensions. The transition is induced by a time-dependent temperature drop in
the heat bath to which the fields are coupled. We present a detailed account of
the dynamics of the fields and vortex string formation as a function of the
quench rate. The results are found in good agreement to the theory of defect
formation proposed by Kibble and Zurek.Comment: 4 pages, 4 figures, RevTe
We present a full characterization of the phase transition in U(1) scalar field theory and of the associated vortex string thermodynamics in 3D. We show that phase transitions in the string densities exist and measure their critical exponents, both for the long string and the short loops. Evidence for a natural separation between these two string populations is presented. In particular our results strongly indicate that an infinite string population will only exist above the critical temperature. Canonical initial conditions for cosmic string evolution are show to correspond to the infinite temperature limit of the theory.
Defects in superfluid3 He, high-Tc superconductors, QCD colour superfluids and cosmic vortons can possess (anti)ferromagnetic cores, and their generalisations. In each case there is a second order parameter whose value is zero in the bulk which does not vanish in the core. We examine the production of defects in the simplest 1+1 dimensional scalar theory in which a second order parameter can take non-zero values in a defect core. We study in detail the effects of core condensation on the defect production mechanism.
We present a toy model for five-dimensional heterotic M-theory where bulk three-branes, originating in 11 dimensions from M five-branes, are modelled as kink solutions of a bulk scalar field theory. It is shown that the vacua of this defect model correspond to a class of topologically distinct M-theory compactifications. Topology change can then be analysed by studying the time evolution of the defect model. In the context of a four-dimensional effective theory, we study in detail the simplest such process, that is the time evolution of a kink and its collision with a boundary. We find that the kink is generically absorbed by the boundary thereby changing the boundary charge. This opens up the possibility of exploring the relation between more complicated defect configurations and the topology of brane-world models. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.