We give a new method to compute the centralizer of an element in Artin braid groups and, more generally, in Garside groups. This method, together with the solution of the conjugacy problem given by the authors in [9], are two main steps for solving conjugacy systems, thus breaking recently discovered cryptosystems based in braid groups [2]. We also present the result of our computations, where we notice that our algorithm yields surprisingly small generating sets for the centralizers.
We define families of aperiodic words associated to Lorenz knots that arise naturally as syllable permutations of symbolic words corresponding to torus knots. An algorithm to construct symbolic words of satellite Lorenz knots is defined. We prove, subject to the validity of a previous conjecture, that Lorenz knots coded by some of these families of words are hyperbolic, by showing that they are neither satellites nor torus knots and making use of Thurston's theorem. Infinite families of hyperbolic Lorenz knots are generated in this way, to our knowledge, for the first time. The techniques used can be generalized to study other families of Lorenz knots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.