The recent interest of electronic skin (e‐skin) has pushed the research toward the development of flexible sensors, namely, for pressure detection. Several mechanisms can be used to transduce pressure into electrical signals, but piezoresistivity presents advantages due to its simplicity. The microstructuration of the films composing these sensors is a common strategy to improve their sensitivity. As an alternative to conventional and expensive photolithography techniques and low customizable techniques based on natural molds, a novel strategy for the microstructuration of polydimethylsiloxane (PDMS) films is proposed, based on molds fabricated by laser engraving. After design optimization of these microstructured films, which relies on microcones, piezoresistive sensors with a limit of detection of 15 Pa and a sensitivity of −2.5 kPa−1 in the low‐pressure regime are obtained. These sensors are used with success on the detection of the blood pressure wave at the wrist, thus exhibiting a great potential for health applications.
Electronic skin (e-skin) is pursued as a key component in robotics and prosthesis to confer them sensing properties that mimic human skin. For pressure monitoring, a great emphasis on piezoresistive sensors was registered due to the simplicity of sensor design and readout mechanism. For higher sensitivity, films composing these sensors may be micro-structured, usually by expensive photolithography techniques or low-cost and low-customizable molds. Sensors commonly present different sensitivities in different pressure ranges, which should be avoided in robotics and prosthesis applications. The combination of pressure sensing and temperature is also relevant for the field and has room for improvement. This work proposes an alternative approach for film micro-structuration based on the production of highly customizable and low-cost molds through laser engraving. These bimodal e-skin piezoresistive and temperature sensors could achieve a stable sensitivity of −6.4 × 10−3 kPa−1 from 1.6 kPa to 100 kPa, with a very robust and reproducible performance over 27,500 cycles of objects grasping and releasing and an exceptionally high temperature coefficient of resistance (TCR) of 8.3%/°C. These results point toward the versatility and high benefit/cost ratio of the laser engraving technique to produce sensors with a suitable performance for robotics and functional prosthesis.
This work describes the production of electronic-skin (e-skin) piezoresistive sensors, which micro-structuration is performed using laser engraved molds. With this fabrication approach, low-cost sensors are easily produced with a tailored performance. Sensors with micro-cones and a high sensitivity of −1 kPa−1 under 600 Pa are more adequate for the blood pressure wave detection, while sensors micro-structured with semi-spheres and a maximum sensitivity of −6 × 10−3 kPa−1 in a large pressure range (1.6 kPa to 100 kPa) are more suitable for robotics and functional prosthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.