In extensional geologic systems such as mid-ocean ridges, deformation is typically accommodated by slip on normal faults, where material is pulled apart under tension and stress is released by rupture during earthquakes and magmatic accretion. However, at slowly spreading mid-ocean ridges where the tectonic plates move apart at rates <80 km m.y.-1 , these normal faults may roll over to form long-lived, low-angled detachments that exhume mantle rocks and form corrugated domes on the seabed. Here we present the results of a local micro-earthquake study over an active detachment at 13°20′N on the Mid-Atlantic Ridge to show that these features can give rise to reverse-faulting earthquakes in response to plate bending. During a 6 month survey period, we observed a remarkably high rate of seismic activity, with >244,000 events detected along 25 km of the ridge axis, to depths of ~10 km below seafloor. Surprisingly, the majority of these were reverse-faulting events. Restricted to depths of 3-7 km below seafloor, these reverse events delineate a band of intense compressional seismicity located adjacent to a zone of deeper extensional events. This deformation pattern is consistent with flexural models of plate bending during lithospheric accretion. Our results indicate that the lower portion of the detachment footwall experiences compressive stresses and deforms internally as the fault rolls over to low angles before emerging at the seafloor. These compressive stresses trigger reverse faulting even though the detachment itself is an extensional system.
International audienceAutonomous hydrophones arrays are an excellent tool for monitoring mid-ocean ridge seismic activity. The major advantage of using arrays of autonomous hydrophones for recording deep-ocean ridge earthquakes is its low magnitude detection thresholds achievable using hydroacoustic techniques. Regional analysis of the detection thresholds of the different autonomous hydrophones arrays deployed along the Mid-Atlantic Ridge reveals the strong influence of the detection threshold in the number of recorded events and it must be taken into account in any further analysis. In this study, the analysis of both autonomous hydrophones and teleseismically detected Mid-Atlantic Ridge seismicity reveals that the background seismicity from the relatively short recording periods of the autonomous hydrophones mimic the results of the much longer teleseismic recording. It also reveals that seismicity generally cluster at both the segment scale and on Mantle Bouguer Anomaly maxima. The big majority of these clusters seem to be related to dyke intrusions and propagation along the Mid-Atlantic Ridge. These dyke intrusions interact with the mainshock-aftershock sequences. The seismic sequences mainshock-aftershock analysis reveals that the strength of the faults is highly influenced by the mode, or style, of faulting. Detachment faults, which are ubiquitous along the Mid-Atlantic Ridge, can produce more prolific shorter duration seismic sequences revealing faster and reduced strain releases in comparison to higher angle normal faults. This reduced strain release is most likely to occur due to the presence of higher levels of serpentinization on detachment faults. Higher levels of serpentenisation can also promote an aseismic transient slip on the mainshock-aftershock sequences
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version. Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
The Lower Tagus River Valley has been affected by severe earthquakes comprising distant events, as in 1755, and local earthquakes, as in 1344, 1531, and 1909. The 1909 earthquake was located NE of Lisbon, near Benavente, causing serious damage and many losses. Mw 6.0 has been assessed for this earthquake and a reverse faulting focal mechanism solution has been calculated. Poor epicenter location, possible directivity and site effects, low fault slip rates, and the thick Cenozoic sedimentary cover make difficult correlation with regional structures. The focal mechanism indicates an ENE reverse fault as source, though it does not match any outcropping active structure suggesting that the event could have been produced by a blind thrust beneath the Cenozoic sedimentary fill. Hidden sources, inferred from seismic reflection data, are a possible NE structure linking the Vila Franca de Xira and the Azambuja faults, or the southern extension of the later. Evidence of surface rupturing is inhibited by the thick Holocene alluvial cover and the high fluvial sedimentation rate, though a slightly depressed area was identified in the Tagus alluvial plain W of Benavente which was investigated as possible geomorphic evidence of co-seismic surface deformation. A high-resolution seismic reflection profile was acquired across a 0.5 m high scarp at this site, and two trenches were opened across the scarp for paleoseismic research. Some deformation of dubious tectonic origin was found, requiring further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.