This study investigated the impact of outdoor air pollutants on indoor air quality in a high-rise building, considering factors related to the seasons and air infiltration. Further, the impact of atmospheric weather conditions on air infiltration has been analysed in a downtown area of Suzhou, China. The influence of the outdoor air pollution rate on indoor air quality in the office building was investigated based on on-site measurements and computer simulations. Results showed that the impact of outdoor air pollutants on indoor air quality was highest in winter, followed by spring, autumn and summer. Furthermore, multiple factors, which affect the indoor air quality in a high-rise building, have been further investigated in this study, including stack effect, wind effect, infiltration rate, outdoor air pollution rate, seasonal change and air filter efficiency. The significant influence of these factors on the indoor air quality level with floor height variations has been verified. Based on the analysis, a high-efficiency filter is recommended to maintain healthy indoor air quality. Meanwhile, a double-filter system is required if a building is exposed to heavily polluted outdoor air considering the most substantial impact of outdoor air pollutants on indoor air quality in winter. Moreover, a numerical model of steady-state indoor PM2.5 concentration was established to determine the suitable air filter efficiency and airtightness.
This study investigated the ventilation efficiency and energy performance of three ventilation strategies—an all-air system (AAS), a radiant panel system with a displacement ventilation system (DPS), and a radiant panel system with a decentralized ventilation system (DVS). The research analyzed the indoor air quality (IAQ) in a high-rise building based on the building’s height, the air handling unit (AHU) location, air infiltration rate, outdoor air pollution rate, seasonal change, and air filter efficiency. The results indicated that the AAS had the best performance in terms of IAQ in the high-rise building in winter; however, the AAS also had the highest annual energy demand. For the same conditions, the DVS consumed less energy but had the worst performance in maintaining a satisfactory IAQ. Considering energy consumption, it is worth developing the DVS further to improve ventilation performance. By applying a double-filter system on the lower floors in a high-rise building, the DVS’s ventilation performance was dramatically improved while at the same time consuming less energy than the original DPS and AAS. The application of DVS can also minimize the negative effect of the infiltration rate on indoor air quality (IAQ) in a building, which means that the DVS can better maintain IAQ within a healthy range for a more extended period. Moreover, it was found that the DVS still had a substantial potential for saving energy during the season when the outdoor air was relatively clean. Hence, it is highly recommended that the DVS is used in high-rise buildings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.