The design and development of wind turbines is increasing throughout the world to offer electricity without paying much to the global warming. The Savonius wind turbine rotor, or simply the Savonius rotor, is a drag-based device that has a relatively low efficiency. A high negative torque produced by the returning blade is a major drawback of this rotor. Despite having a low efficiency, its design simplicity, low cost, easy installation, good starting ability, relatively low operating speed, and independency to wind direction are its main rewards. With the goal of improving its power coefficient (CP), a considerable amount of investigation has been reported in the past few decades, where various design modifications are made by altering the influencing parameters. Concurrently, various augmentation techniques have also been used to improve the rotor performance. Such augmenters reduce the negative torque and improve the self-starting capability while maintaining a high rotational speed of the rotor. The CP of the conventional Savonius rotors lie in the range of 0.12–0.18, however, with the use of augmenters, it can reach up to 0.52 with added design complexity. This paper attempts to give an overview of the various augmentation techniques used in Savonius rotor over the last four decades. Some of the key findings with the use of these techniques have been addressed and makes an attempt to highlight the future direction of research.
The blade profiles and blade shapes of vertical-axis Savonius wind turbine rotors have undergone a series of changes over the past three decades. Wind turbine aerodynamicists have carried out numerous computational and experimental research to arrive at a suitable rotor blade design configuration so as to harvest maximum energy from the available wind. In most of the studies, the geometric and aerodynamic aspects of the rotor blade design have been reported. Interestingly enough, a couple of review papers got published in the area of Savonius rotors during the last one decade. However, there is not a single piece of literature that gives a comprehensive and a systematic review of Savonius rotor blade profiles and shapes. This paper aims to collate all the research findings related to these blade profiles/shapes and makes an attempt to highlight their features together with future recommendations.
The Savonius rotor appears to be particularly promising for the small-scale applications because of its design simplicity, good starting ability, and insensitivity to wind directions. There has been a growing interest in recent times to harness wind energy in an efficient manner by developing newer blade profiles of Savonius rotor. The overlap ratio (OR), one of the important geometric parameters, plays a crucial role in the turbine performance. In a recent study, an elliptical blade profile with a sectional cut angle (θ) of 47.5° has demonstrated its superior performance when set at an OR = 0.20. However, this value of OR is ideal for a semicircular profile, and therefore, requires further investigation to arrive at the optimum overlap ratio for the elliptical profile. In view of this, the present study attempts to make a systemic numerical study to arrive at the optimum OR of the elliptical profile having sectional cut angle, θ = 47.5°. The 2D unsteady simulation is carried out around the elliptical profile considering various overlap ratios in the range of 0.0 to 0.30. The continuity, unsteady Reynolds Averaged Navier-Stokes (URANS) equations and two equation eddy viscosity SST (Shear Stress transport) k-ω model are solved by using the commercial finite volume method (FVM) based solver ANSYS Fluent. The torque and power coefficients are calculated as a function of tip speed ratio (TSR) and at rotating conditions. The total pressure, velocity magnitude and turbulence intensity contours are obtained and analyzed to arrive at the intended objective. The numerical simulation demonstrates an improved performance of the elliptical profile at an OR = 0.15.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.