Biomechanical perspective of external fixator is one of the greatest factor to consider in successfully treating bone fracture. This is due to the fact that mechanical behavior of the structure can be analyzed and optimized in order to avoid mechanical failure, increase bone fracture healing rate and prevent pre-term screw loosening. There are three significant factors that affect the stability of external fixator which are the placement of pin at the bone, configuration and components of external fixator. These factors lead to one question: what is the optimum pin placement in which exerts optimum stability? To date, literature on above mentioned factors is limited. Therefore, we conducted a study to evaluate the uniplanar-unilateral external fixator for two different pin placement techniques in treating transverse tibia fracture via finite element method. The study was started off with the development of transverse tibia fracture using Mimics software. Computed tomography (CT) data image was utilized to develop three dimensional tibia bone followed by crafting fracture on the bone. Meanwhile, the external fixator was developed using SolidWork software. Both tibia bone and external fixator were meshed in 3-matic software with triangular mesh element. Simulation of this configuration was took place in a finite element software, Marc.Mentat software. A load of 400 N was applied to the proximal tibia bone in order to simulate stance phase of a gait cycle. From the findings, the pin placement at the second cortex of bone provided optimum stability in terms of stress distribution and displacement, which should be considered for better treatment for transverse tibia fracture. On the other hand, the pin placement at first cortex should be avoided to prevent many complications.
Biomechanical perspective of external fixator is one of the biggest elements that should be considered in treating fracture bone. This is due to the mechanical behavior of the structure could be analyzed and optimized in order to avoid failure, increase bone fracture healing rate and prevents preterm screw loosening. There are three significant factors that affect the stability of external fixator and those are the placement of pin at the bone, configuration and components of external fixator. All these factors contribute to a question, what is the optimum pin diameter which exerts good stress distribution? To date, the research on the above-mentioned factors are limited in the literature. Therefore, this study was conducted to evaluate the unilateral external fixator with different pin sizes in treating tibia shaft fracture via the finite element method. First and foremost, the development of the tibia shaft fracture was conducted using Mimics software. The computed tomography (CT) data image was utilized to develop three-dimensional tibia bone followed by crafting fracture on the bone. Meanwhile, the unilateral external fixator was developed using SolidWorks software. In this study, five pin diameters (4.5, 5.0, 5.5, 6.0 and 6.5 mm) were developed and analyzed. Both tibia bone and external fixator were meshed in 3-matic software. Simulation of this configuration took place in a finite element software, Marc.Mentat. From the findings, it is shown that the larger diameter of pin demonstrated the lowest stress distribution. The size of the 5.5mm pin shows optimum diameter in terms of stress distribution with the value of 21.50 MPa in bone and 143.33 MPa in fixator. Meanwhile the displacement value of 1.42mm in bone and 1.20mm in fixator. In conclusion, it is suggested that the pin diameter of 5.5 mm is the most favorable option in treating tibia shaft fracture in terms of mechanical perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.