Cloud computing is an Internet-based computing service provided by the third party allowing share of resources and data among devices. It is widely used in many organizations nowadays and becoming more popular because it changes the way of how the Information Technology (IT) of an organization is organized and managed. It provides lots of benefits such as simplicity and lower costs, almost unlimited storage, least maintenance, easy utilization, backup and recovery, continuous availability, quality of service, automated software integration, scalability, flexibility and reliability, easy access to information, elasticity, quick deployment and lower barrier to entry. While there is increasing use of cloud computing service in this new era, the security issues of the cloud computing become a challenges. Cloud computing must be safe and secure enough to ensure the privacy of the users. This paper firstly lists out the architecture of the cloud computing, then discuss the most common security issues of using cloud and some solutions to the security issues since security is one of the most critical aspect in cloud computing due to the sensitivity of user's data.
Willemite glass-ceramics were successfully derived from conventional melt-quench ZnO-SLS precursor glass by an isothermal heat treatment process. The effect of heat treatment temperatures on the physical properties was investigated by Archimedes principle and linear shrinkage. The generation of willemite crystal phase and morphology with increase in heat treatment temperature was examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM) techniques. X-ray diffraction revealed that the metastableβ-Zn2SiO4and thermodynamically stable zinc orthosilicateα-Zn2SiO4phases can be observed at temperatures above 700°C. The experimental results indicated that the density and shrinkage of the glass-ceramic vary with increasing the sintering temperature. FTIR studies showed that the structure of glass-ceramic consists of SiO2and ZnO4units and exhibits the structural evolution of willemite glass-ceramics. The characteristic of strong vibrational bands can be related to theSiO44-tetrahedron corresponding to reference spectra of willemite.
Mn-doped willemite (Zn 2 SiO 4 :Mn 2+ ) glass-ceramics derived from ZnO-SLS glass system were prepared by a conventional meltquenching technique followed by a controlled crystallization step employing the heat treatment process. Soda lime silica (SLS) glass waste, ZnO, and MnO were used as sources of silicon, zinc, and manganese, respectively. The obtained glass-ceramic samples were characterized using the X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR), UV-Visible (UV-Vis), and photoluminescence (PL) spectroscopy. The results of XRD revealed that ZnO crystal and willemite ( -Zn 2 SiO 4 ) were presented as major embedded crystalline phases. This observation was consistent with the result of FESEM which showed the presence of irregularity in shape and size of willemite crystallites. FTIR spectroscopy exhibits the structural evolution of willemite based glass-ceramics. The optical band gap shows a decreasing trend as the Mn-doping content increased. Photoluminescent technique was applied to characterize the role of Mn 2+ ions when entering the willemite glass-ceramic structure. By measuring the excitation and emission spectra, the main emission peak of the glass-ceramic samples located at a wavelength of 585 nm after subjecting to 260 nm excitations. The following results indicate that the obtained glass-ceramics can be applied as phosphor materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.