Kajian ini bertujuan menawarkan solusi pandangan negara kesejahteraan terhadap crowdfunding sebagai sebuah platform big data PMKS mengoptimalkan program perlindungan sosial. Revolusi Industri 4.0 dan pandemi Covid-19 secara sistemik, membawa perubahan program perlindungan sosial dalam bentuk big data terintegrasi dari pemerintah pusat sampai daerah dan mempercepat arus perubahan. Sementara beban Kemensos dalam program perlindungan sosial begantung pada struktur APBN yang mempunyai keterbatasan anggaran. Program Keluarga Harapan (PKH) sebagai alat intervensi pemerintah menjembatani program perlindungan sosial yang terkoneksi dengan data kesehatan, pendidikan, dan layanan sosial perlu beradaptasi dengan perubahan. Dengan menggunakan soft system dynamic methodology (SSDM), pendekatan negara kesejahteraan melalui konsep crowdfunding, dapat memperluas cakupan penerima layanan perlindungan sosial serta mempertajam ketepatan sasaran penerima yang dikelola terintegrasi dengan big data. Peneliti melakukan analisis customers, actors, transformation process, worldview, owners, dan environmental constraints CATWOE dan menggunakan aplikasi Vensim. Hasil pengolahan data berupa diagram kausalitas (CLD) sistem berpikir menggambarkan kondisi sebenarnya terhadap perbandingan kausalitas sistem berpikir seharusnya. Kata Kunci: Perubahan Sosial Ekonomi, Pembangunan, Jalur Lintas Selatan
This study aims to analyze the transformation of the New Public Management into the New Public Management within the framework of institutional divergence. The study focuses on the transformation of New Public Management as an institutional phenomenon within the framework of bureaucratic hybridization that results in unique divergences according to the organization. Social actors as the main element of institutional normative coupled with other institutional mimetics have an impact on elaboration patterns of government, affecting efficiency and organization. The case study methodology was chosen to see how the roles of actors in the bureaucracy with the help of Text Network Analysis as a visual and structured confirmation tool. The results show that the hybridization of public management in the bureaucracy needs to go beyond coercive factors to encourage the potential of state apparatus in digital governance towards ideal Post New Public Management. Methodological findings in the form of qualitative research variants that are adaptive to the application of technology can be applied to build strong data validity and reliability. Theoretically, the findings also complement institutional divergence studies that have not yet examined the context of the digital bureaucracy era.
Artikel ini bertujuan menganalisis divergensi aktor-individual dalam pengelolaan bank soal digital menghadapi kebutuhan pemanfaatan big data pada masyarakat era 5.0. Kompleksitas divergensi tata kelola organisasi dilihat dari pendekatan berpikir sistem dimulai dari identifikasi permasalahan, pembuatan model konseptual, serta usulan yang berbasis tindakan secara menyeluruh dari setiap pemangku kepentingan. Ragam metode berpikir sistem yang digunakan berupa Soft Systems Methodology untuk menjawab pertanyaan penelitian yang menganalisis secara keseluruhan pemikiran, perkataan, dan tindakan pemilikmasalah. Hasil dari pendekatan sistem menunjukkan, transformasi digital di dalam pengelolaan bank soal mengalami hambatan ketercapaian pemanfaatan big data karena adanya divergensi institusional berupa hibridasi tata kelola administrasi publik yang disebabkan oleh mekanisme power, attraction, dan mimesis. Solusi yang dapat dilakukan dalam mendorong percepatan transformasi digital pertama terletak pada aspek power di level makro perlu adanya tata ulang aturan kelembagaan tranformasi digital yang terarahdan spesifik. Kedua pada aspek attraction perlu adanya penguasaan kompetensi bahasa pemrograman, data base enginering, dan data mining di setiap pegawai yang terlibat. Ketiga, pada aspek mimesis, organisasi dapat merujuk pada praktik terbaik keberhasilan organisasi lain. Kesimpulan penelitian menunjukkan terdapat dua belas aktivitas divergensi aktor individual yang menyebabkan hibridasi administrasi publik dan empat di antaranya mendukung perwujudan tranformasi digital. This article aims to analyze the divergence of individual actors in managing digital item banks in facing the needs of using big data in the 5.0 eras. The complexity of divergence in organizational governance captured from the systems thinking approach starting from the problems of making, conceptual models, and based on the overall actions of each stakeholder. Various systems thinking methods are used in the form of Soft Systems Methodology to answer research questions that analyse the overall thoughts, words, andactions of the problem owner. The results of the systems approach show that digital transformation in bank management is experiencing obstacles to achieving the use of big data due to institutional divergences in the form of hybridization in public administration governance caused by power, attractiveness and mimesis. The solution that can be done in encouraging the acceleration of the first digital transformation lies in the aspect of power at the macro level, there is a need for a directed and specific restructuring of the digitaltransformation institutional rules. Second, in the aspect of attraction, it is necessary to master the competence of programming languages, database techniques, and data mining for every employee involved. Third, in the mimetic aspect, organizations can refer to the best practices of other organizations’ success. The conclusion of the study shows that there are twelve individual actor-divergent activities that cause hybridization of public administration and four support the realization of the digital transformation.
This article aimed to observe the efforts of Indonesia and the problems faced in fighting the COVID-19 pandemic regarding the indecisive public policy and the reluctance of people from all walks of life to comply with the Health Protocols (HP) from the perspective of sociological institutionalism (Nee 2003 ; Nee and Opper 2015 ). A two-step variant of SSM-based multi method by Muhammaditya et al. ( 2021 ) was applied by inserting (1) Textual Network Analysis by Segev ( 2020 ) at stage 1 of SSM to obtain an insightful understanding of the problem situation and to enrich the rich picture, and (2) Social Network Analysis at stage 5 of SSM to expand a skillful discussion on the reality. The research novelty was elaborated in four main empirical facts: First , government policies had initially faltered in dealing with the pandemic, reflected by the dissonance in the statements made by high-ranking state officials. Second , there was a great number of people disregarding HP and pandemic mitigation policies, particularly during annual rites, the end of year celebration, and Eid Al-Fitr. Third , the government encountered a dilemma in issuing policies, whether to remain encouraging economic growth, guarantee the continuity of economic activities, or end the spread of COVID-19. Fourth , the direct involvement of the president in handling COVID-19 had a significant impact in reducing active cases that no province was declared as alert areas in October 2021. Meanwhile, the methodological novelty reflected in broader data and analysis through SNA and TNA methods had enriched the practice of SSM in finding sharper conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.