The increase in world population has led to a significant increase in the numbers of cars and used tyres. These tyres must be disposed of on an ongoing basis as a result of their consumption or deterioration. This can result in negative effects on the environment that must be preserved, especially from those materials, i.e., these waste materials are difficult to dispose of without special treatments. Hence, extensive experimental investigations and numerical simulations need to be conducted to use and recycle these wastes by exploring the possibility of using them as alternative ingredients in construction materials. For example, waste rubber pieces can be used as one of the main components of concrete. In this study, the main aim was to numerically simulate the flexural behaviours of rubberised concrete under the influence of an applied vertical loading with different contents of added rubbers by using the commercial finite element software ANSYS. The obtained numerical results were compared with the experimental results of a previous study and showed a good agreement with the deflections and moduli of rupture, with the variances from 2–7% in the deflections. However, the differences in the moduli of rupture varied between 5% and 9%. Finally, the statistical analyses indicated that these numerical mean values and standard deviations were acceptable and were very close to the experimental values.
In this study, the effects of the partial immersion of sulphate attack on the ultimate load capacity of reinforced self-compacting concrete (SCC) columns and the sulphate attack resistance improvement using silica fume, steel fibres, and the combination of silica fume and steel fibres were assessed. Twelve short circular self-compacting reinforced concrete columns (0.150 m in diameter and 0.7 m long) were cast and divided into groups according to (1) the three acid-attack groups. The first group was tested without an acid attack (control). The second group was tested after 1 month of exposure to 2% acid. The final group was tested after 1 month of exposure to 4% acid and was then (2) subdivided according to the type of casted concrete. The first group was cast with SCC. The second group was cast with SCC and silica fume (0.1% of the cement weight). The third group was cast with SCC and 1% volume fraction steel fibres. The fourth group was cast with SCC silica fume and 1% volume fraction steel fibre. All columns were tested by axial loading. The ultimate load was increased by 42% with silica fume, 190% with steel fibres, and 238% with silica fume and steel fibres. Exposure to 2% and 4% acid reduced the ultimate loads of the columns casted with SCC by 23% and 47%, the columns casted with SCC and silica fume by 34% and 37%, the columns casted with SCC and steel fibres by 69% and 78%, and the columns casted with SCC, silica fume, and steel fibres by 72% and 79%, respectively. Based on the results, using silica fumes improved sulphate resistance, and using steel fibres enhanced sulphate resistance at an acceptable ratio. Furthermore, the mix with silica fume and steel fibres improved sulphate resistance at a good ratio. We encountered several problems in this study. The partial immersion of sulphate affected the strain in both concrete and steel. Future studies using different immersion ratios are recommended. Doi: 10.28991/CEJ-2022-08-10-04 Full Text: PDF
Eight (120 mm) square and (1 m) long reinforced concrete columns were tested under axial load to large inelastic deformations. The main purpose of this research was to investigate the behavior of column sections confined by rectilinear ties. Major variables considered in this program included: (1) Distribution of longitudinal and lateral steel, including unbalanced section due to the asymmetric distribution of reinforcing steel bars (2) type of concrete; normal concrete and self-compacting concrete. Finite element model was performed to validate the experimental results of this investigation. Test results indicate that a asymmetric distribution longitudinal bars results in desired performance of columns. Unsupported longitudinal bars and its number effective only at large deformations and result in rapid deterioration of column behavior at a later stage. There is 8.75% and 35.65% decrease in ultimate capacity under the control column, asymmetric distribution of reinforcing steel bars appears a more brittle while symmetric bars yields more elastic than brittle, it adds safety when failure happens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.