It is known, that the multi-subunit complex of photosystem II (PSII) and some of its single proteins exhibit carbonic anhydrase activity. Previously, we have shown that PSII depletion of HCO/CO as well as the suppression of carbonic anhydrase activity of PSII by a known inhibitor of α‑carbonic anhydrases, acetazolamide (AZM), was accompanied by a decrease of electron transport rate on the PSII donor side. It was concluded that carbonic anhydrase activity was required for maximum photosynthetic activity of PSII but it was not excluded that AZM may have two independent mechanisms of action on PSII: specific and nonspecific. To investigate directly the specific influence of carbonic anhydrase inhibition on the photosynthetic activity in PSII we used another known inhibitor of α‑carbonic anhydrase, trifluoromethanesulfonamide (TFMSA), which molecular structure and physicochemical properties are quite different from those of AZM. In this work, we show for the first time that TFMSA inhibits PSII carbonic anhydrase activity and decreases rates of both the photo-induced changes of chlorophyll fluorescence yield and the photosynthetic oxygen evolution. The inhibitory effect of TFMSA on PSII photosynthetic activity was revealed only in the medium depleted of HCO/CO. Addition of exogenous HCO or PSII electron donors led to disappearance of the TFMSA inhibitory effect on the electron transport in PSII, indicating that TFMSA inhibition site was located on the PSII donor side. These results show the specificity of TFMSA action on carbonic anhydrase and photosynthetic activities of PSII. In this work, we discuss the necessity of carbonic anhydrase activity for the maximum effectiveness of electron transport on the donor side of PSII.
The efficiency of synthetic binuclear manganese complexes in reconstituting PS II electron flow and oxygen-evolution capacity was analyzed in PS II enriched preparations deprived of their manganese and of the extrinsic regulatory subunits. Measurements of the variable fluorescence induced by actinic illumination with continuous light led to the following results: (a) the synthetic binuclear complexes are more efficient than MnCl2 in establishing a PS II electron flow; (b) an almost complete restoration is achieved at concentrations of these complexes that correspond with an overall stoichiometry of two manganese per PS II; and (c) the electron flow restored by the binuclear manganese complexes closely resembles that of normal O2-evolving PS II preparations in its resistance to addition of 50 microM EDTA, while that supported by MnCl2 is practically completely suppressed at the same chelator concentration. The rate of O2 evolution was used as a measure of the capability to function as manganese source in reconstitution of the oxygen evolution capacity. It was found that (i) as in the case of PS II electron transport, the synthetic binuclear manganese complexes are significantly more efficient than MnCl2; (ii) with respect to the manganese concentration, the maximum effect is achieved with a mu-oxo bridged binuclear Mn(III) complex (symbolized by M-3) at concentrations corresponding to four manganese per PS II; and (iii) at all concentrations of binuclear manganese complex M-3 a significantly higher restoration of the O2 evolution rate is achieved if the reconstitution assay contains in addition the extrinsic regulatory 33 kDa protein (PS II-O protein).(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.