Natural rubber (NR) is known as hydrophobic material and is incompatible with hydrophilic filler such as halloysite nanotubes (HNTs). To overcome this obstacle, the compatibilizer is a material of choice to incorporate in such compound. In this study, bio-based compatibilizer was used which was prepared by modification of palm stearin. The presence of special functionalities of modified palm stearin (MPS) was confirmed by Fourier transform infrared (FTIR) analysis. It was then varied from 0.5 phr to 2 phr to the NR matrix. Here, the properties were evaluated through the mechanical properties with special attention to the relationship between their reinforcement and crystallization behavior after stretching. It was found that the addition of MPS significantly enhanced the modulus, tensile strength, and tear strength of the composites. This clearly corresponded to interaction between NR and HNT promoted by MPS. The FTIR spectrum, X-ray diffraction patterns, and scanning electron microscopy images were also utilized to verify the behavior of MPS in the NR/HNT composites. As for the crystallization of the composites, the results obtained from stress–strain curves are in very good agreement to the outputs observed by the synchrotron wide-angle X-ray scattering. This corresponding interaction of MPS has greatly influenced on assisting the strain-induced crystallization of composites.
Natural rubber (NR) latex foam is one of the rubber products that are increasingly in demand in the market. This is simply because of its lightweight, good thermal insulation, and resilience. The applications of NR latex foam are mostly for pillows and mattresses. This has resulted in these products requiring antibacterial performance which is very important for the safety of the end-users. In this study, the antibacterial NR latex foam was prepared by incorporating the silver-doped zinc oxide (Ag-doped ZnO) into the NR latex foam. Ag-doped ZnO was prepared by microwave-assisted method and then characterized through morphological characteristics and X-ray diffraction (XRD). The content of Ag doped onto ZnO was designed by varying the AgNO3 content at 15 wt%, 50 wt%, and 100 wt% of ZnO. The results confirmed that the Ag was successfully doped onto ZnO. The silver particles were found to be in the 40–50 nm range, where the size of ZnO ranges between 300 and 400 nm, and the Ag attached to the ZnO particles. The XRD patterns of Ag-doped ZnO correspond to planes of hexagonal wurtzite ZnO structure and cubic metallic Ag. This Ag-doped ZnO was further added to NR latex foam. It was observed that Ag-doped ZnO did not affect the physical properties of the NR latex foam. However, it is clear that both the inhibition zone and percent reduction of bacteria (e.g., E. coli and S. aureus) were enhanced by the addition of Ag-doped ZnO. It showed a decrease in the amount of cell growth over contact time. The content of 100 wt% AgNO3 could reduce E. coli and S. aureus up to 64.72% and 58.90%, respectively, when samples were maintained for 24 h. This study provides a scientific understanding of how Ag-doped ZnO could facilitate the development of eventual rubber foam products based on the respective results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.