Bitcoin is an online currency that is used worldwide to make online payments. It has consequently become an investment vehicle in itself and is traded in a way similar to other open currencies. The ability to predict the price fluctuation of Bitcoin would therefore facilitate future investment and payment decisions. In order to predict the price fluctuation of Bitcoin, we analyse the comments posted in the Bitcoin online forum. Unlike most research on Bitcoin-related online forums, which is limited to simple sentiment analysis and does not pay sufficient attention to note-worthy user comments, our approach involved extracting keywords from Bitcoin-related user comments posted on the online forum with the aim of analytically predicting the price and extent of transaction fluctuation of the currency. The effectiveness of the proposed method is validated based on Bitcoin online forum data ranging over a period of 2.8 years from December 2013 to September 2016.
We propose a physics-inspired simulation framework that expresses visual effects of flowing water frozen in glaze or directional icicles. The proposed ice model considers the direction of the water flow, which affects the growth of icicles. Water dynamics are computed using a conventional particle-based simulation. Ice glaze and directional icicles are generated by incorporating our freezing solver. To determine whether a water particle is converted into ice or remains liquid, we compute the nucleation energy based on the humidity and water flow. The humidity is approximated as a virtual water film on object surfaces. The water flow is incorporated by introducing a growth direction vector to guide the direction of icicle growth.Ice-generating regions can be controlled using 3-D modeling tools such as Autodesk Maya or 3DS Max. Experiments showed that a realistic ice glaze was created on the surfaces of objects and that icicles grew in the direction of the water flow.
This paper proposes a system for predicting increases in virtual world user actions. The virtual world user population is a very important aspect of these worlds; however, methods for predicting fluctuations in these populations have not been well documented. Therefore, we attempt to predict changes in virtual world user populations with deep learning, using easily accessible online data, including formal datasets from Google Trends, Wikipedia, and online communities, as well as informal datasets collected from online forums. We use the proposed system to analyze the user population of EVE Online, one of the largest virtual worlds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.