A retrotransposon from the fungal plant pathogen Fusarium oxysporum f. sp. lycopersici has been isolated and characterized. The element, designated skippy (skp) is 7846 bp in length, flanked by identical long terminal repeats (LTR) of 429 bp showing structural features characteristic of retroviral and retrotransposon LTRs. Target-site duplications of 5 bp were found. Two long overlapping open reading frames (ORF) were identified. The first ORF, 2562 bp in length, shows homology to retroviral gag genes. The second ORF, 3888 bp in length, has homology to the protease, reverse transcriptase. RNase H and integrase domains of retroelement pol genes in that order. Sequence comparisons and the order of the predicted proteins from skippy indicate that the element is closely related to the gypsy family of LTR-retrotransposons. The element is present in similar copy numbers in the two races investigated, although RFLP analysis showed differences in banding patterns. The number of LTR sequences present in the genome is higher than the number of copies of complete elements, indicating excision by homologous recombination between LTR sequences.
Rearrangement of fusarium oxysporum retrotransposon skippy was induced by growth in the presence of potassium chlorate. Three fungal strains, one sensitive to chlorate (Co60) and two resistant to chlorate and deficient for nitrate reductase (Co65 and Co94), were studied by Southern analysis of their genomic DNA. Polymorphism was detected in their hybridization banding pattern, relative to the wild type grown in the absence of chlorate, using various enzymes with or without restriction sites within the retrotransposon. Results were consistent with the assumption that three different events had occurred in strain Co60: genomic amplification of skippy yielding tandem arrays of the element, generation of new skippy sequences, and deletion of skippy sequences. Amplification of Co60 genomic DNA using the polymerase chain reaction and divergent primers derived from the retrotransposon generated a new band, corresponding to one long terminal repeat plus flanking sequences, that was not present in the wild-type strain. Molecular analysis of nitrate reductase-deficient mutants showed that generation and deletion of skippy sequences, but not genomic amplification in tandem repeats, had occurred in their genomes.
A transformation system has been developed for Mucor circinelloides, by direct cloning of a wild-type methionine gene that complements the auxotrophic mutation. The marker gene isolated was associated with an autonomous replication sequence (ARS) functional in this zygomycete. Southern hybridisation analyses of transformants showed sequence homology both with vector DNA and with Mucor wild-type DNA. The transformation frequency (up to 6000 per microgram DNA) and the mitotic instability of the transformed cells were studied. The hybridisation pattern of undigested DNA from the transformants suggests that the inserts contain a novel autonomous replication element for this filamentous fungus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.