An innovative method to switch the wettability of a micropatterned polymeric surface by thermally induced shape memory effect is presented. For this purpose, first polycyclooctene (PCO) is crosslinked with dicumyl peroxide (DCP) and its melting temperature, which corresponds with the switching transition temperature (T trans ), is measured by Dynamic Mechanical Thermal Analysis (DMTA) in tension mode. Later, the shape memory behavior of the bulk material is analyzed under different experimental conditions employing a cyclic thermomechanical analysis (TMA). Finally, after creating shape memory micropillars by laser ablation of crosslinked thermo-active polycyclooctene (PCO), shape memory response and associated effect on water contact angle is analyzed. Thus, deformed micropillars cause lower contact angle on the surface from reduced roughness, but the original hydrophobicity is restored by thermally induced recovery of the original surface structure.Polymers 2015, 7 1675
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.