BackgroundExosomes are considered key elements for communication between cells, but very little is known about the mechanisms and selectivity of the transference processes involving exosomes released from different cells.ResultsIn this study we have investigated the transfer of hollow gold nanoparticles (HGNs) between different cells when these HGNs were loaded within exosomes secreted by human placental mesenchymal stem cells (MSCs). These HGNs were successfully incorporated in the MSCs exosome biogenesis pathway and released as HGNs-loaded exosomes. Time-lapse microscopy and atomic emission spectroscopy allowed us to demonstrate the selective transfer of the secreted exosomes only to the cell type of origin when studying different cell types including cancer, metastatic, stem or immunological cells.ConclusionsIn this study we demonstrate the selectivity of in vitro exosomal transfer between certain cell types and how this phenomenon can be exploited to develop new specific vectors for advanced therapies. Specifically, we show how this preferential uptake can be leveraged to selectively induce cell death by light-induced hyperthermia only in cells of the same type as those producing the corresponding loaded exosomes. We describe how the exosomes are preferentially transferred to some cell types but not to others, thus providing a better understanding to design selective therapies for different diseases.
Electronic supplementary materialThe online version of this article (10.1186/s12951-018-0437-z) contains supplementary material, which is available to authorized users.
Metallic iron nanoparticles were synthesized within micron-sized mesoporous molecular sieves (with 2.9-nm pores) and hollow silica microcapsules (pores of 2.7 and 15 nm) using several cycles of wet impregnation under vacuum, followed by drying, oxidation, and reduction steps. For iron-loaded MCM-48, SQUID measurements revealed ferromagnetic behavior at room temperature with a magnetic moment as high as 3.40 emu/g (measured at 2 T) after four deposition cycles. Iron-loaded hollow silica microcapsules (250-nm wall thickness) showed a magnetic moment of 2.40 emu/g (at 2 T) after three deposition cycles and a coercivity as low as 12.9 Oe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.