Hepatocellular carcinoma (HCC) is considered as a complex liver disease and ranked as the eighth-highest mortality rate with a prevalence of 2.4% in Malaysia. Magnetic resonance imaging (MRI) has been acknowledged for its advantages, a gold technique for diagnosing HCC, and yet the false-negative diagnosis from the examinations is inevitable. In this study, 30 MR images from patients diagnosed with HCC is used to evaluate the robustness of semi-automatic segmentation using the flood fill algorithm for quantitative features extraction. The relevant features were extracted from the segmented MR images of HCC. Four types of features extraction were used for this study, which are tumour intensity, shape feature, textural feature and wavelet feature. A total of 662 radiomic features were extracted from manual and semi-automatic segmentation and compared using intra-class relation coefficient (ICC). Radiomic features extracted using semi-automatic segmentation utilized flood filling algorithm from 3D-slicer had significantly higher reproducibility (average ICC = 0.952 ± 0.009, p < 0.05) compared with features extracted from manual segmentation (average ICC = 0.897 ± 0.011, p > 0.05). Moreover, features extracted from semi-automatic segmentation were more robust compared to manual segmentation. This study shows that semi-automatic segmentation from 3D-Slicer is a better alternative to the manual segmentation, as they can produce more robust and reproducible radiomic features.
Cervical cancer is the most common cancer and ranked as 4th in morbidity and mortality among Malaysian women. Currently, Magnetic Resonance Imaging (MRI) is considered as the gold standard imaging modality for tumours with a stage higher than IB2, due to its superiority in diagnostic assessment of tumour infiltration with excellent soft-tissue contrast. In this research, the robustness of semi-automatic segmentation has been evaluated using a flood-fill algorithm for quantitative feature extraction, using 30 diffusion weighted MRI images (DWI-MRI) of cervical cancer patients. The relevant features were extracted from DWI-MRI segmented images of cervical cancer. First order statistics, shape features, and textural features were extracted and analysed. The intra-class relation coefficient (ICC) was used to compare 662 radiomic features extracted from manual and semi-automatic segmentations. Notably, the features extracted from the semi-automatic segmentation and flood filling algorithm (average ICC = 0.952 0.009, p > 0.05) were significantly higher than the manual extracted features (average ICC = 0.897 0.011, p > 0.05). Henceforth, we demonstrate that the semi-automatic segmentation is slightly expanded to manual segmentation as it produces more robust and reproducible radiomic features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.