This study aimed to introduce an alternative, inexpensive, and straightforward polymer with specific mechanical and dielectric properties suitable for the fabrication of a clinical-grade kidney phantom. Two polymer-based phantom materials, polydimethylsiloxane (PDMS) and silicone elastomer (SE), were investigated for their capability to meet the requirements. The concentration ratios of base to curing agent (B/C) were 9.5/1.5, 19/3, 10/1, 20/2, 10.5/0.5, and 21/1 for PDMS and 4.5/5.5, 10/12, 5/5, 11/11, 5.5/4.5, and 12/10 for SE. All samples were mixed, degassed, and poured into Petri dishes and small beakers. The polymer was cured under room temperature for 2 h and then demolded from the hard mold. The air bubbles produced were removed using a vacuum desiccator for 30 min. All samples underwent mechanical testing (tensile strength and elastic modulus), and their dielectric properties were measured using a dielectric probe kit equipped with 85071E materials measurement software. The radiation attenuation properties were also measured using PhyX-Zetra for PDMS phantoms with the chemical formula C2H6OSi. Small changes in base and cross-linker play an essential role in modifying the elastic modulus and tensile strength. The effective atomic number of PDMS showed a similar pattern with human kidney tissue at the intermediate energy level of 1.50 × 10−1 to 1 MeV. Therefore, PDMS can potentially be used to mimic the human kidney in terms of tensile strength, flexibility, the acceptable real part of the complex dielectric constant ε′r, and conductivity, which allows it to be used as a stable kidney phantom for medical imaging purposes.
Propolis contains polyphenolic compounds such as flavonoids and phenols that are able to demonstrate a broad spectrum of biological activities including antioxidant, antibacterial, and many more. This study was carried out to determine the total phenolics, flavonoids, and antioxidant activity of water-extracted propolis samples from three different Indo-Malayan stingless bee species, namely, Tetrigona apicalis, Tetrigona binghami, and Homotrigona fimbriata. Total phenolic and flavonoid contents were evaluated using Folin–Ciocalteu colorimetric and aluminium chloride methods, respectively, while the antioxidant activity was analysed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. Results indicated that H. fimbriata extracts exhibit the highest TPC, TFC, and antiradical activity among all samples tested. Interestingly, the data also showed that the higher the concentration of the extract used, the higher the antioxidant activity exhibited by the samples. Statistically, there were no significant differences recorded between the different bee species’ propolis studied. In conclusion, the propolis extracts showed stronger antioxidant potential with higher TPC and TFC values. This study also noted the presence of bioactive compounds from local stingless bee propolis that could potentially be utilised for their medicinal and health benefits.
The present work aimed to evaluate the reproducibility of radiomics features derived from manual delineation and semiautomatic segmentation after enhancement using the Contrast Limited Adaptive Histogram Equalization (CLAHE) and Adaptive Histogram Equalization (AHE) techniques on a benign tumor of two-dimensional (2D) mammography images. Thirty mammogram images with known benign tumors were obtained from The Cancer Imaging Archive (TCIA) datasets and were randomly selected as subjects. The samples were enhanced for semiautomatic segmentation sets using the Active Contour Model in MATLAB 2019a before analysis by two independent observers. Meanwhile, the images without any enhancement were segmented manually. The samples were divided into three categories: (1) CLAHE images, (2) AHE images, and (3) manual segmented images. Radiomics features were extracted using algorithms provided by MATLAB 2019a software and were assessed with a reliable intra-class correlation coefficient (ICC) score. Radiomics features for the CLAHE group (ICC = 0.890 ± 0.554, p < 0.05) had the highest reproducibility compared to the features extracted from the AHE group (ICC =0.850 ± 0.933, p < 0.05) and manual delineation (ICC = 0.673 ± 0.807, p > 0.05). Features in all three categories were more robust for the CLAHE compared to the AHE and manual groups. This study shows the existence in variation for the radiomics features extracted from tumor region that are segmented using various image enhancement techniques. Semiautomatic segmentation with image enhancement using CLAHE algorithm gave the best result and was a better alternative than manual delineation as the first two techniques yielded reproducible descriptors. This method should be applicable for predicting outcomes in patient with breast cancer.
A rapid, sustainable, and ecologically sound approach is urgently needed for the production of semiconductor nanomaterials. CuSe nanoparticles (NPs) were synthesized via a microwave-assisted technique using CuCl 2 ·2H 2 O and Na 2 SeO 3 as the starting materials. The role of the irradiation time was considered as the primary concern to regulate the size and possibly the shape of the synthesized nanoparticles. A range of characterization techniques was used to elucidate the structural and optical properties of the fabricated nanoparticles, which included X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy, field emission scanning electron microscopy, Raman spectroscopy (Raman), UV–Visible diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The mean crystallite size of the CuSe hexagonal (Klockmannite) crystal structure increased from 21.35 to 99.85 nm with the increase in irradiation time. At the same time, the microstrain and dislocation density decreased from 7.90 × 10 –4 to 1.560 × 10 –4 and 4.68 × 10 –2 to 1.00 × 10 –2 nm –2 , respectively. Three Raman vibrational bands attributed to CuSe NPs have been identified in the Raman spectrum. Irradiation time was also seen to play a critical role in the NP optical band gap during the synthesis. The decrease in the optical band gap from 1.85 to 1.60 eV is attributed to the increase in the crystallite size when the irradiation time was increased. At 400 nm excitation wavelength, a strong orange emission centered at 610 nm was observed from the PL measurement. The PL intensity is found to increase with an increase in irradiation time, which is attributed to the improvement in crystallinity at higher irradiation time. Therefore, the results obtained in this study could be of great benefit in the field of photonics, solar cells, and optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.