ATP-binding cassette (ABC) transporters use the energy of ATP hydrolysis to move molecules through cellular membranes. They are directly linked to human diseases, cancer multidrug resistance, and bacterial virulence. Very little is known of the conformational dynamics of ABC transporters, especially at the single-molecule level. Here, we combine single-molecule spectroscopy and a novel molecular simulation approach to investigate the conformational dynamics of the ABC transporter BtuCD. We observe a single dominant population of molecules in each step of the transport cycle and tight coupling between conformational transitions and ligand binding. We uncover transient conformational changes that allow substrate to enter the transporter. This is followed by a 'squeezing' motion propagating from the extracellular to the intracellular side of the translocation cavity. This coordinated sequence of events provides a mechanism for the unidirectional transport of vitamin B by BtuCD.
Protein-protein interactions are pivotal to most, if not all, physiological processes, and understanding the nature of such interactions is a central step in biological research. Surface Plasmon Resonance (SPR) is a sensitive detection technique for label-free study of bio-molecular interactions in real time. In a typical SPR experiment, one component (usually a protein, termed 'ligand') is immobilized onto a sensor chip surface, while the other (the 'analyte') is free in solution and is injected over the surface. Association and dissociation of the analyte from the ligand are measured and plotted in real time on a graph called a sensogram, from which pre-equilibrium and equilibrium data is derived. Being label-free, consuming low amounts of material, and providing pre-equilibrium kinetic data, often makes SPR the method of choice when studying dynamics of protein interactions. However, one has to keep in mind that due to the method's high sensitivity, the data obtained needs to be carefully analyzed, and supported by other biochemical methods.SPR is particularly suitable for studying membrane proteins since it consumes small amounts of purified material, and is compatible with lipids and detergents. This protocol describes an SPR experiment characterizing the kinetic properties of the interaction between a membrane protein (an ABC transporter) and a soluble protein (the transporter's cognate substrate binding protein).
Video LinkThe video component of this article can be found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.