Thermal maturity modelling is widely used in basin modelling to help assess the exploration risk. Of the calibration algorithms available, the Easy%Ro model has gained wide acceptance. In this study, thermal gradients at 70 wells in the Thrace Basin, NW Turkey, were calibrated against vitrinite reflectance (%Ro) using the Easy%Ro model combined with an inverse scheme. The mean squared residual (MSR) was used as a quantitative measure of mismatch between the modelled and measured %Ro. A 90% confidence interval was constructed on the mean of squared residuals to assess uncertainty. The best thermal gradient (i.e. minimum MSR) was obtained from the MSR curve for each well, and an average palaeo-thermal gradient map of the Thrace Basin was therefore created. Calculated thermal gradients were compared to the results of previous studies. A comparison of modelled palaeo-thermal gradients with those measured at the present day showed that the thermal regime of the Thrace Basin has not changed significantly during the basin's history.The geological and thermal characteristics of the Thrace Basin were compared and the thermal anomalies were evaluated as a function of basin evolution processes. The basin's thermal regime was controlled by: (1) basement edge effects; (2) crustal thickness and basement heat flows; (3) thermal conductivity variations within the stratigraphic column; (4) transient heat flow effects; and (5) the influence of tectonic features. The impact of these factors on variations in the thermal gradients is discussed in detail.Basement edge effects are most marked on the steep northern margin of the basin where heat is preferentially retained in highly conductive basement rocks rather than being transferred into less conductive sedimentary rocks. Thus, heat is significantly focused onto the northern edge of the basement, resulting in a thermal anomaly along the northern basin margin.The margins of the basin, with relatively thick upper crust, have relatively higher thermal gradients compared to the central areas. This is due to radiogenic heat production in the upper crust. Thus, thermal gradients increase above highs and at the margins where thicker upper crust is present. A heat flow map of the Thrace Basin, constructed using a basin-scale crustal thickness map and a basement heat-flow algorithm, is presented and demonstrates the heat generation potential of the upper crust.The Eocene Ceylan Formation, which has relatively low thermal conductivity, significantly reduces the thermal gradients by blocking heat transferred from the basement. Areas of high sedimentation rate are associated with low thermal gradients due to the transient heat flow effects of young, thick and "thermally immature" sediments as a function of the heat capacities of these deposits.A direct relationship between thermal gradients and major structural trends could not be established because of a number of factors including the inactivity of the subsurface Miocene fault systems, which did not allow the flow of high temperature fluids t...
Hydrogeochemical characterization of the Erzin Plain coastal aquifer has been accomplished in this research to investigate the spatial and transient behavior of its water quality. The aquifer is located along the Mediterranean coast and forms one of the most productive aquifers in Turkey. Chemical analyses of groundwater samples collected from the aquifer during 1964–1968 (128 samples), May 1993 (30 samples), October 1993 (37 samples), and June 1994 (20 samples) constitute the available groundwater quality data set. The characteristics of the groundwater samples were evaluated statistically by correlation, principal component, and factor analyses to investigate interrelations among various groundwater quality and aquifer property parameters and to assess the occurrence of seawater intrusion. Application of principal component and factor analyses yielded two groups of variables indicative of seawater and freshwater. The basin is being contaminated by seawater, although it was not possible to locate the intrusion due to lack of sufficient data. The study emphasizes that management policies be reorganized for optimal use of the aquifer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.