This paper presents a low power capacitance to voltage converter (CVC) circuit using two differential amplifier circuits, two Schottky rectifier diodes constructed in symmetrical manner and combined with instrumentation amplifier circuits. The differential capacitance to voltage simulation work has been realized with cheap discrete components. Combination energy from solar, vibration and heat is expected to be used to source the capacitance circuit. Constant dc voltage of 3 V has been used to source the CVC circuit in this work. It is found by the simulation, the converter circuit consumes 3.9 mW of total power, operates at 40 kHz using 400 mV excitation signal. The circuit is able to detect changes of capacitance from 4 – 12.5 pF using reference capacitance of 5 pF. Sensitivity of 0.132 mV for 1 fF capacitance change has been observed in the circuit. This circuit is suitable for wireless health monitoring system.
The proper function of the integrated circuit (IC) in an inhibiting electromagnetic environment has always been a serious concern throughout the decades of revolution in the world of electronics, from disjunct devices to today’s integrated circuit technology, where billions of transistors are combined on a single chip. The automotive industry and smart vehicles in particular, are confronting design issues such as being prone to electromagnetic interference (EMI). Electronic control devices calculate incorrect outputs because of EMI and sensors give misleading values which can prove fatal in case of automotives. In this paper, the authors have non exhaustively tried to review research work concerned with the investigation of EMI in ICs and prediction of this EMI using various modelling methodologies and measurement setups.
We are in the era of IoT and 5G technologies. IoT has wide range of applications in Smart Home, Smart cities, Agriculture, Health etc. Due to that, the number of connected sensor devices become increased. Along with that security of these devices become a challenging issue. By the next year there would be a great increase in the number of connected sensor devices. For the power constrained devices like sensors and actuators, they requires lightweight security mechanism. There are several Lightweight (LW) energy efficient Hashing techniques are available. They are photon, quark, spongent, Lesamnta-LW etc. These all are fixed length block sized and key sized LW hashing techniques. All transformation methods used today in LW hash function only support fixed block size and key size and requires high hardware requirements too. In this paper, we compare different types of LW hash families in terms of their design and introduce the possibility of variable length hash function using Mersenne number based transform.
Structural Health Monitoring (SHM) is a very crucial part of maintenance and management of buildings and structures. The use of SHM in recent years has been increasing due to the advancement in technology and the availability of nanodevices and nanosensors which can detect damaged part or crack in a structure. In this paper, PSpice simulation was carried out to show the response of the integrated electronic piezoelectric (IEPE) with a VPWL-source. Then, practical experiment was done using Arduino Mega with the ADXL335 accelerometer in a laboratory setup. LabVIEW software was used along with Arduino IDE software to make graphical visualization of accelerometer reading to be captured. Furthermore, a web service was deployed which enabled LabVIEW data transmission to a smartphone running Data Dashboard application for real-time monitoring anywhere. Therefore, making the system an ecosystem of Internet of Things enabling the user to access monitoring system while on the move. The result of the vibration test on the accelerometer showed that the accelerometer response to small changes in the x, y and z axis of the accelerometer which can be used to detect micro-movements in a structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.