Kenaf fibre reinforced polyester biocomposites fabricated by hand lay-up technique by using propionic and succinic anhydride-modified kenaf fibres. Chemical structure, mechanical, thermal and morphological properties of kenaf fibres reinforced polyester biocomposites evaluated. The Fourier transform infrared study of modified kenaf fibres carried out to look at changes in functional groups after modification. It confirmed from Fourier transform infrared spectroscopy the variation in positions of functional groups. The mechanical (tensile, flexural and impact) property results revealed that biocomposites with modified kenaf fibres exhibited better properties as compared to untreated kenaf fibres-reinforced polyester biocomposites. Morphological studies show that treated kenaf biocomposites show better fibre/matrix interaction. Thermal analysis results of modified biocomposites exhibited higher initial and final decomposition temperatures. Modified biocomposites display less char residue as compared with unmodified kenaf fibres reinforced polyester composites.
Introduction. Co-infection of leptospirosis–malaria is not uncommon due to their overlapping geographical distribution in the tropics. Aim. This study aimed to describe and compare the demographic, clinical and laboratory features of leptospirosis–malaria co-infection (LMCI) against leptospirosis mono-infection (LMI) in Peninsular Malaysia. Methodology. Data of patients admitted to various hospitals in Peninsular Malaysia from 2011 to 2014 diagnosed with leptospirosis in our laboratory were obtained from their admission records. Co-infections with malaria were identified via blood film for malaria parasites (BFMP). Description with inferential statistics analysis and multiple logistic regressions were used to distinguish features between dual and mono-infections. Results. Of 111 leptospirosis-positive patients, 26 (23.4 %) tested positive for malaria. Co-infections were predominant among male patients with a mean age of 33 years and were prevalent among immigrant populations who had settled in high-density suburban areas. Chills and rigor with splenomegaly were the only significant distinguishing clinical features of LMCI while leukocytosis and raised transaminases were significant laboratory parameters. Only chills and rigor demonstrated a predictive value for LMCI from analysis of multiple logistic regressions. No death was attributed to co-infection in this study, in contrast to LMI (11.8 %, n=10). Conclusion. The significant prevalence of LMCI found in this study with overlapping demographic, clinical and laboratory parameters makes diagnosis of co-infection challenging. It is essential to evaluate co-infection in endemic areas. Strengthened awareness of LMCI, comprehensive diagnostic services and further prospective studies are warranted.
Oil palm fronds biomass was used as a source for isolation of cellulose nanowhiskers (CNW), and its subsequent characterization was done. Non-cellulosic components such as lignin, hemicellulose, and pectin were removed from the biomass by chemimechanical alkaline hydrogen peroxide method followed by sulphuric acid hydrolysis having different time duration of hydrolysis. Apart from the progressive reduction in peaks characteristic of hemicellulose and lignin dissolution, FTIR spectroscopy analysis showed that there were no significant variations in peak positions, signifying that the hydrolysis did not affect the chemical structure of CNW. FESEM showed that there was gradual reduction in the aggregated structure of fiber due to bleaching. Nanoscale structure of CNW was revealed by TEM. XRD analysis revealed that the natural structure of cellulose I polymorph was maintained irrespective of the hydrolysis time. High thermal stability and aspect ratio of the extracted CNW demonstrated its suitability as a reinforcement material in nanocomposites.
Natural fiber-reinforced composites gained considerable interest in the scientific community due to their eco-friendly nature, cost-effective, and excellent mechanical properties. Here, we reported a chemical modification of kenaf fiber using propionic anhydride to enhance the compatibility with the epoxy matrix. The incorporation of the modified woven and nonwoven kenaf fibers into the epoxy matrix resulted in the improvement of the thermal and mechanical properties of the composite. The thermal stability of the epoxy composites was enhanced from 403°C to 677°C by incorporating modified woven kenaf fibers into the epoxy matrix. The modified and unmodified woven kenaf fiber-reinforced epoxy composites had a tensile strength of 64.11 and 58.82 MPa, respectively. The modified woven composites had highest flexural strength, which was 89.4 MPa, whereas, for unmodified composites, it was 86.8 MPa. The modified woven fiber-reinforced epoxy composites showed the highest value of flexural modulus, which was 6.0 GPa compared to unmodified woven composites (5.51 GPa). The impact strength of the epoxy composites was enhanced to 9.43 kJ m−2 by the incarnation of modified woven kenaf fibers into epoxy matrix. This study will be an effective platform to design the chemical modification strategy on natural fibers for enhancing the compatibility toward the hydrophobic polymer matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.