We construct a family of derivative-free optimal iterative methods without memory to approximate a simple zero of a nonlinear function. Error analysis demonstrates that the without-memory class has eighth-order convergence and is extendable to with-memory class. The extension of new family to the with-memory one is also presented which attains the convergence order 15.5156 and a very high efficiency index 15.51561/4≈1.9847. Some particular schemes of the with-memory family are also described. Numerical examples and some dynamical aspects of the new schemes are given to support theoretical results.
We construct an optimal eighth-order scheme which will work for multiple zeros with multiplicity [Formula: see text], for the first time. Earlier, the maximum convergence order of multi-point iterative schemes was six for multiple zeros in the available literature. So, the main contribution of this study is to present a new higher-order and as well as optimal scheme for multiple zeros for the first time. In addition, we present an extensive convergence analysis with the main theorem which confirms theoretically eighth-order convergence of the proposed scheme. Moreover, we consider several real life problems which contain simple as well as multiple zeros in order to compare with the existing robust iterative schemes. Finally, we conclude on the basis of obtained numerical results that our iterative methods perform far better than the existing methods in terms of residual error, computational order of convergence and difference between the two consecutive iterations.
In this paper, a general procedure to develop some four-parametric with-memory methods to find simple roots of nonlinear equations is proposed. The new methods are improved extensions of with derivative without memory iterative methods. We used four self-accelerating parameters to boost up the convergence order and computational efficiency of the proposed methods without using any additional function evaluations. Numerical examples are presented to support the theoretical results of the methods. We further investigate the dynamics of the methods in the complex plane.
We construct a new general class of derivative free n-point iterative methods of optimal order of convergence 2n−1 using rational interpolant. The special cases of this class are obtained. These methods do not need Newton's iterate in the first step of their iterative schemes. Numerical computations are presented to show that the new methods are efficient and can be seen as better alternates.
Solving systems of nonlinear equations plays a major role in engineering problems. We present a new family of optimal fourthorder Jarratt-type methods for solving nonlinear equations and extend these methods to solve system of nonlinear equations. Convergence analysis is given for both cases to show that the order of the new methods is four. Cost of computations, numerical tests, and basins of attraction are presented which illustrate the new methods as better alternates to previous methods. We also give an application of the proposed methods to well-known Burger's equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.