12Software forges like GitHub host millions of repositories. Software engineering researchers have been able to take advantage of such a large corpora of potential study subjects with the help of tools like GHTorrent and Boa. However, the simplicity in querying comes with a caveat: there are limited means of separating the signal (e.g. repositories containing engineered software projects) from the noise (e.g. repositories containing home work assignments). The proportion of noise in a random sample of repositories could skew the study and may lead to researchers reaching unrealistic, potentially inaccurate, conclusions. We argue that it is imperative to have the ability to sieve out the noise in such large repository forges. We propose a framework, and present a reference implementation of the framework as a tool called reaper, to enable researchers to select GitHub repositories that contain evidence of an engineered software project. We identify software engineering practices (called dimensions) and propose means for validating their existence in a GitHub repository. We used reaper to measure the dimensions of 1,994,977 GitHub repositories. We then used the data set train classifiers capable of predicting if a given GitHub repository contains an engineered software project. The performance of the classifiers was evaluated using a set of 200 repositories with known ground truth classification. We also compared the performance of the classifiers to other approaches to classification (e.g. number of GitHub Stargazers) and found our classifiers to outperform existing approaches. We found stargazers-based classifier to exhibit high precision (96%) but an inversely proportional recall (27%). On the other hand, our best classifier exhibited a high precision (82%) and a high recall (83%). The stargazer-based criteria offers precision but fails to recall a significant potion of the population.
Software forges like GitHub host millions of repositories. Software engineering researchers have been able to take advantage of such a large corpora of potential study subjects with the help of tools like GHTorrent and Boa. However, the simplicity in querying comes with a caveat: there are limited means of separating the signal (e.g. repositories containing engineered software projects) from the noise (e.g. repositories containing home work assignments). The proportion of noise in a random sample of repositories could skew the study and may lead to researchers reaching unrealistic, potentially inaccurate, conclusions. We argue that it is imperative to have the ability to sieve out the noise in such large repository forges. We propose a framework, and present a reference implementation of the framework as a tool called reaper, to enable researchers to select GitHub repositories that contain evidence of an engineered software project. We identify software engineering practices (called dimensions) and propose means for validating their existence in a GitHub repository. We used reaper to measure the dimensions of 1,994,977 GitHub repositories. We then used the data set train classifiers capable of predicting if a given GitHub repository contains an engineered software project. The performance of the classifiers was evaluated using a set of 200 repositories with known ground truth classification. We also compared the performance of the classifiers to other approaches to classification (e.g. number of GitHub Stargazers) and found our classifiers to outperform existing approaches. We found stargazers-based classifier to exhibit high precision (96%) but an inversely proportional recall (27%). On the other hand, our best classifier exhibited a high precision (82%) and a high recall (83%). The stargazer-based criteria offers precision but fails to recall a significant potion of the population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.