The global COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first detected in China in December 2019. To date, there have been approximately 3.4 million reported cases of COVID-19 and over 24,000 deaths in Thailand. In this study, we investigated the molecular characteristics and evolution of SARS-CoV-2 in Thailand from 2020 to 2022. Two hundred sixty-eight SARS-CoV-2 isolates, collected mostly in Bangkok from COVID-19 patients, were characterised by partial genome sequencing. Moreover, the viruses in 5,627 positive SARS-CoV-2 samples were identified as viral variants – B.1.1.7 (Alpha), B.1.617.2 (Delta), B.1.1.529 (Omicron/BA.1), or B.1.1.529 (Omicron/BA.2) – by multiplex real-time reverse transcription polymerase chain reaction (RT-PCR) assays. The results revealed that B.1.36.16 caused the predominant outbreak in the second wave (December 2020–January 2021), B.1.1.7 (Alpha) in the third wave (April–June 2021), B.1.617.2 (Delta) in the fourth wave (July–December 2021), and B.1.1.529 (Omicron) in the fifth wave (January–March 2022). The evolutionary rate of the viral genome was 2.60 × 10 -3 (95% highest posterior density [HPD], 1.72 × 10 -3 to 3.62 × 10 -3 ) nucleotide substitutions per site per year. Continued molecular surveillance of SARS-CoV-2 is crucial for monitoring emerging variants with the potential to cause new COVID-19 outbreaks. Supplementary Information The online version contains supplementary material available at 10.1007/s00705-022-05666-6.
Coxsackievirus (CV)-A6 infections cause hand, foot, and mouth disease (HFMD) in children and adults. Despite the serious public health threat presented by CV-A6 infections, our understanding of the mechanisms by which new CV-A6 strains emerge remains limited. This study investigated the molecular epidemiological trends, evolutionary dynamics, and recombination characteristics of CV-A6-associated HFMD in Thailand between 2019 and 2022. In the HFMD patient samples collected during the 4-year study period, we identified enterovirus (EV) RNA in 368 samples (48.7%), of which CV-A6 (23.7%) was the predominant genotype, followed by CV-A4 (6%), EV-A71 (3.7%), and CV-A16 (3.4%). According to the partial viral protein (VP) 1 sequences, all these CV-A6 strains belonged to the D3 clade. Based on the viral-RNA-dependent RNA polymerase (RdRp) gene, four recombinant forms (RFs), RF-A (147, 84.5%), RF-N (11, 6.3%), RF-H (1, 0.6%), and newly RF-Y (15, 8.6%), were identified throughout the study period. Results from the similarity plot and bootscan analyses revealed that the 3D polymerase (3Dpol) region of the D3/RF-Y subclade consists of sequences highly similar to CV-A10. We envisage that the epidemiological and evolutionarily insights presented in this manuscript will contribute to the development of vaccines to prevent the spread of CV-A6 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.