Boehmite alumina nanoparticles are added to PP‐g‐MAH‐compatibilized blends of PA 12 and PP to study the effects of nanoparticle loading in the resulting composites. WAXD and SEM data suggest that the nanoparticles enhanced the coalescence of PP. DSC, DMA, and TGA reveal that the final properties such as crystallization temperature, flexural storage modulus, thermal degradation temperature, etc., improve with increasing nanoparticle loading for blend/based composites. FTIR results show that the nanoparticles interfere with the interfacial activity at 5 wt% nanoparticle loading. All results are compared between the neat polymers and the compatibilized blend and show that despite a slight increase in dispersed‐phase domain size, all other properties improve with the addition of AlO(OH).
A composite of boehmite alumina nanoparticles and a PP/PA12 blend is prepared. WAXD and SEM suggest that a low filler loading enhances the coalescence of PA12, whereas a higher loading reverses the situation. DSC, DMA and TGA reveal that the final properties of the blend composites such as crystallization temperatures, flexural storage moduli, or thermal degradation temperatures improve with increasing nanoparticle loading. The data are compared with the neat polymers and the compatibilized blend, and the results show that the compatibility increases only at high nanoparticle loading, and most of the thermal properties improve with increasing nanoparticle content in the blends. The presence of interfacial interactions between the polymer matrices and the filler was confirmed via FTIR.
Ethylene/1-pentene copolymers were prepared using a [(CO) 5 Wϭ C(Me)OZr(Cp) 2 Cl] (1)/MAO catalyst system. 1-Pentene incorporation in the copolymer was monitored using 13 C-NMR spectroscopic methods. The weight average molecular weights (M w ) of the copolymers were between 142,000 and 629,000 g/mol, with polydispersity indexes (PDIs) ranging from Ϸ 2 to 90, as analyzed by size exclusion chromatography (SEC). Melting and crystallization temperatures, determined using differential scanning calorimetry (DSC) and crystallization analysis fractionation (CRYSTAF), decreased linearly as the amount of 1-pentene in the copolymer increased. SEC-FTIR revealed that the 1-pentene is predominantly incorporated in the low molecular weight fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.