An intercalated polylactide (PLA)/layered silicate nanocomposite was prepared by simple melt extrusion of PLA and organically modified montmorillonite. The detailed crystallization kinetics and morphology of neat PLA before and after nanocomposite preparation were studied by using polarized optical microscopy, light scattering, differential scanning calorimetric, and wide-angle X-ray diffraction analyses. The overall crystallization rate and spherulitic texture of pure PLA were strongly influenced in the presence of montmorillonite particles.
Polylactide and poly(butylene succinate-co-adipate) (PLA/PBSA) were melt-blended in the presence of triphenyl phosphite (TPP). An increase in the torque during melt mixing was used to monitor the changes in viscosity as compatibilization of the blends occurred. Scanning electron micrographs showed not only a reduction in the dispersed-phase size with increased TPP content but also fibrillated links between the PLA and PBSA phases, signifying compatibilization. Moreover, optimization of parameters such as the mixing sequence and time, TPP content, and PBSA concentration revealed that blends containing 30 and 10 wt % PBSA and 2 wt % TPP, which were processed for 30 min, were optimal in terms of thermomechanical properties. The impact strength increased from 6 kJ/m(2) for PLA to 11 and 16 kJ/m(2) for blends containing 30 and 10 wt % PBSA, respectively, whereas the elongation-at-break increased from 6% for PLA to 20 and 37% for blends containing 30 and 10 wt % PBSA, respectively. Upon compatibilization, the failure mode shifted from the brittle fracture of PLA to ductile deformation, effected by the debonding between the two phases. With improved phase adhesion, compatibilized blends not only were toughened but also did not significantly lose tensile strength and thermal stability.
Understanding the structure-property relationship in polymer/layered silicate nanocomposites is of fundamental importance in designing materials with desired properties. To understand these relations in the case of poly(butylene succinate) (PBS)/organically modified layered silicate (OMLS) nanocomposites, we studied the rheological properties of these materials in detail, because the rheological behavior of polymer/OMLS nanocomposites is strongly influenced by their nanostructure and the interfacial characteristics. For this reason, a series of PBS/OMLS nanocomposites were prepared using a simple melt intercalation technique. Two different types of OMLS, montmorillonite (mmt) modified with octadecylammonium chloride and saponite (sap) modified with quaternary hexadecyl tri-nbutylphosphonium bromide, were used for the nanocomposite preparations. The structure of nanocomposites in the nanometer scale was characterized using wide-angle X-ray diffraction (WAXD) analyses and transmission electron microscopy (TEM) observations. A flocculated structure has a strong effect on mechanical properties (both in solid and melts) and various other materials properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.