Wastewater of tofu industry contains very high organic content, then anaerobic process is the most suitable for degrading this liquid waste. The hybrid upflow anaerobic sludge blanket reactor (HUASBR) was applied in this study because it has the advantage in ensuring good contact between biomass and substrate where a suspension medium and anaerobic filter are able to withstand more biomass in the attached media. Processing Anaerobic process is carried out with the help of bacteria where bacteria need seeding and acclimatization. Acclimatization is the process of adaptation of microorganisms to wastewater to be treated. This adaptation process is carried out by adding waste water from the smallest concentration to the actual concentration. The purpose of this study is to determine the effect of variations in organic load rate (OLR) on the acclimatization process in removing COD, biogas production in accordance with the pH of the anaerobic degradation process so that the optimal process of the acclimatization process can be obtained. In this study, the acclimatization process took 200 days with variation of OLR in the range of 1.5 - 5.9 kg COD m-3 d-1 at HRT 24 hours and flow rate up (Vup) of 0.08 m/h. The objective of OLR variation was to evaluate acclimatization process on the HUASBR performance during process optimization. The highest biogas production and removal efficiency of COD were achieved in pH range of 6.5 - 7.6. While, the highest COD removal efficiency obtained was 86.57% on the 140th day and biogas production 7700 ml for OLR 4.8 kg COD m-3d-1 at HRT 24 h. Consequently, the optimum OLR for treating the tofu wastewater could be achieved up to 4.8 kg COD m-3d-1 and HRT 24h.
It is necessary to design a nitrification bioreactor process so that further processing takes place optimally. Performance studies are carried out by evaluating the kinetic parameters that apply specifically to the applied process. The Monod model was applied to determine the value of kinetic parameters in designing and operating a bioreactor. This study aims to determine the value of the kinetic parameters to variations in feed concentration (50, 75, and 100%). The mechanism of the reactor process for the decomposition of pollutants, the influent is fed into the reactor with an up-flow pristaltic pump. The decomposition process provides contact time between organic matter and microorganisms, resulting in a good separation from the reactor outlet. The most optimum kinetic parameter value at 100% wastewater concentration with a value of (k) 1.1086 (dayˉ 1), (Ks) 1.0564 g l-1, (Y) 5.4862 mg MLVSS/mg, (kd) 1.7944 (dayˉ 1), (µm) 6.8372 (dayˉ 1).
Reprocessing organic vegetable waste from conventional markets can have beneficial effects, such as producing bioenergy, reducing the need for inorganic fertilizers, and minimizing the volume of contaminants in the environment. Organic material composting can help lower greenhouse gas emissions and generate income. Physical-chemical factors like temperature, pH, particle size, moisture content, aeration, and CN ratio were used to regulate the breakdown process. Trichoderma harzianum, an effective microorganism, and Trichoderma harzianum helped the degradation process function. High-quality compost is produced by converting organic matter in a bioreactor system, where the solid substrate replenishes nutrients. Based on the optimum point of the decomposition procedure, the analytical findings were achieved. After that the material had been homogenized and aerated, this process took place (oxygen). When the temperature is increased, the active and ripening stages take place, which triggers the breakdown process. The ideal temperature for composting, between 30-45 °C, was reached. The temperature steadily drops when the majority of the material has broken down, and the composting process is complete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.