The election of the Governor and Deputy Governor of Bali will go through several stages of elections starting from the determination of the Governor and Deputy Governor of Bali to the stages of vote counting. In the election of the Governor and Deputy Governor of Bali the community can be directly involved in the voting stage which will be held on June 27, 2018 (General Commission Election or KPU, 2018). So that it raises many opinions, not only positive and neutral opinions but also negative ones. This research is expected to be able to conduct research on public opinion which contains positive, neutral and negative sentiments. In this research used tokenization preprocessing data N-gram method.N-gram is a token consisting of three words in each one token. In the stemming stages used the Nzief Adriani algorithm. For the classification process of this research used the 'Naïve Bays Classifier (NBC) method. In testing the candidate Governor's data the highest accuracy was obtained from the classification of KBS-Ace data on data taken from twitter with 89% accuracy, 91% precision and 94% recall and lowest accuracy when KBS-Ace data calcification process on social media Face book . Intisari-Pemilihan Calon Gubernur dan Wakil GubernurBali 2018 akan melalui beberapa tahapan pemilu mulai dari penentuan bakal calon Gubernur dan Wakil Gubernur Bali hingga tahapan penghitungan suara. Dalam pemilihan Gubernur dan Wakil Gubernur Bali masyarakat dapat terlibat langsung dalam tahapan pemungutan suara yang akan dilaksanakan pada tanggal 27 Juni 2018 (KPU, 2018). Sehingga dapat memunculkan banyak komentar atau pendapat, tidak hanya komentar positif dan netral tapi juga komentar yang negatif. Penelitian ini diharapkan mampu untuk melakukan riset atas komentar masyarakat yang mengandung sentimen baik atau positif, sama sekali tidak mengandung senrimen atau netral dan mengandung sentimen buruk atau negatif. Dalam penelitian ini metode digunakan untuk preprocessing data menggunakan tokenisasi Ngram. N-gram adalah token yang terdiri dari tiga kata setiap satu token. Pada tahap stemming menggunakan algoritma Nzief Adriani. Untuk proses klasifikasinya menggunakan metode Naïve Bayes Classifier (NBC). Pada pengujian data calon Gubernur akurasi tertinggi diperoleh dari klasifikasi data KBS-Ace pada data yang diambil dari Twitter dengan nilai akurasi 89%, presisi 91% dan recall 94% dan akurasi terendah pada saat proses kalsifikasi data KBS-Ace pada media sosial Facbook Kata Kunci-Analisa Sentimen, Calon Gubernur Bali 2018, Naive Bayes Classifier
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.