To demonstrate and describe fetal head molding and brain shape changes during delivery, we used three-dimensional (3D) magnetic resonance imaging (MRI) and 3D finite element mesh reconstructions to compare the fetal head between prelabor and the second stage of labor. A total of 27 pregnant women were examined with 3D MRI sequences before going into labor using a 1 Tesla open field MRI. Seven of these patients subsequently had another set of 3D MRI sequences during the second stage of labor. Volumes of 2D images were transformed into finite element 3D reconstructions. Polygonal meshes for each part of the fetal body were used to study fetal head molding and brain shape changes. Varying degrees of fetal head molding were present in the infants of all seven patients studied during the second phase of labor compared with the images acquired before birth. The cranial deformation, however, was no longer observed after birth in five out of the seven newborns, whose post-natal cranial parameters were identical to those measured before delivery. The changing shape of the fetal brain following the molding process and constraints on the brain tissue were observed in all the fetuses. Of the three fetuses presenting the greatest molding of the skull bones and brain shape deformation, two were delivered by cesarean-section (one after a forceps failure and one for engagement default), while the fetus presenting with the greatest skull molding and brain shape deformation was born physiologically. This study demonstrates the value of 3D MRI study with 3D finite element mesh reconstruction during the second stage of labor to reveal how the fetal brain is impacted by the molding of the cranial bones. Fetal head molding was systematically observed when the fetal head was engaged between the superior pelvic strait and the middle brim.
Objective
To determine whether the French AmbUlatory Cesarean Section (FAUCS) technique reduces postoperative pain and promotes maternal autonomy compared with the Misgav Ladach cesarean section (MLCS) technique in elective conditions.
Study design
One hundred pregnant women were randomly, but in a non-blinded manner, assigned to undergo FAUCS or MLCS. The primary outcome was a postoperative mean pain score (PMPS), and secondary outcomes were a combined pain/medication score, time to regain autonomy, surgical duration, calculated blood loss, surgical complications, and neonatal outcome.
Results
Women in the FAUCS group experienced less pain than those in the MLCS group (PMPS = 1.87 [1.04–2.41] vs. 2.93 [2.46–3.75], respectively; p < 0.001). Six hours after surgery, the combined pain/medication score for FAUCS patients was 33% lower than that for MLCS patients (p < 0.001). FAUCS patients more rapidly regained autonomy, with 94% reaching autonomy within 12 h vs. 4% of MLCS patients (p < 0.001). There were no differences in maternal surgical or neonatal complications between groups.
Conclusions
Our results indicate that FAUCS can reduce postoperative pain and accelerate recovery, suggesting that this technique might be superior to MLCS and should be more widely used. One potentially key difference between FAUCS and MLCS is that MLCS includes 100 mcg spinal morphine anesthesia in addition to the same anesthesia used by FAUCS. Any interpretation of apparent differences must take the presence/absence of morphine into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.