An effective method was developed to prepare hybrid materials of TiO2 nanoparticles on reduced graphene oxide (RGO) sheets for application in solar cells. The morphology, size, and crystal phase of the TiO2 nanoparticles and TiO2@reduced graphene oxide (TiO2@RGO) hybrids were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), Raman, and UV-vis diffuse reflectance spectroscopy. A possible growth mechanism of TiO2@RGO hybrids is proposed based on observations of the TiO2 nanoparticles obtained from the hydrolysis process under different conditions. The effects of different reduced graphene oxide contents on the energy conversion efficiency of the dye-sensitized solar cells (DSSCs) based on J-V and incident photon-to-current conversion efficiency (IPCE) spectra are also discussed. DSSCs based on TiO2@RGO hybrid photoanodes with a graphene content of 1.6 wt % showed an overall light-to-electricity conversion efficiency of 7.68%, which is much higher than that of pure anatase nanoparticles (4.78%) accompanied by a short-circuit current density of 18.39 mA cm(2), an open-circuit voltage of 0.682 V, and a fill factor of 61.2%.
Ultrahigh crystalline TiO2 nanotubes were synthesized by hydrogen peroxide treatment of very low crystalline titania nanotubes (TiNT-as prepared), which were prepared with synthesized TiO2 nanoparticles by hydrothermal methods in an aqueous NaOH solution. Thus, prepared ultrahigh crystalline TiO2 nanotubes (TiNT-H2O2) showed comparable crystallinity with high crystalline TiO2 nanoparticles. The details of nanotubular structures were elucidated by high resolution-transmission electron microscopy (HR-TEM), field emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray analysis in transmission electron microscopy (TEM-EDX), X-ray diffraction (XRD), photoluminescence (PL), and BET surface area. TiNT-H2O2 was found to be a multiwalled anatase phase only with an average outer diameter of approximately 8 nm and an inner diameter of approximately 5 nm and grown along the [001] direction to 500-700 nm long with an interlayer fringe distance of ca. 0.78 nm. The photocatalytic activity of TiNT-H2O2 was about 2-fold higher than those of TiNT-as prepared, synthesized TiO2 nanoparticles, and TiO2-P25 (Degussa) in the photocatalytic oxidation of trimethylamine gas under UV irradiation.
Single-crystal anatase(101), (001) and rutile(100), (001) surfaces with atomically flat terraces were prepared and their structure verified with atomic force microscopy. A ruthenium complex dye, cis-di(thiocyanato)-bis(
2,2′
-bipyridyl-
4,4′
-dicarboxylate) ruthenium(II) (usually known as N3) was used to sensitize these surfaces. The N3 coverage dependence of the incident photon to current efficiencies (IPCE) was measured for all four surfaces. IPCE values were much higher on anatase(101) and rutile(100) than on the other two surfaces. The kinetics of N3 adsorption was also studied on the four surfaces. The adsorption kinetics for a slow adsorption step could be fit with a Langmuir kinetic model. The differences in the adsorption of N3 and the IPCE values are discussed based on the structure of the N3 and the geometry and reactivity of the binding sites on the four surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.