The capability of Yersinia ruckeri to survive in the aquatic systems reflects its adaptation (most importantly through the alteration of membrane permeability) to the unfavorable environments. The nonspecific porins are a key factor contributing to the permeability. Here we studied the influence of the stimuli, such as temperature, osmolarity, and oxygen availability on regulation of Y. ruckeri porins. Using qRT‐PCR and SDS‐PAGE methods we found that major porins are tightly controlled by temperature. Hyperosmosis did not repress OmpF production. The limitation of oxygen availability led to decreased expression of both major porins and increased transcription of the minor porin OmpY. Regulation of the porin balance in Y. ruckeri, in spite of some similarities, diverges from that system in Escherichia coli. The changes in porin regulation can be adapted in Y. ruckeri in a species‐specific manner determined by its aquatic habitats.
Nonspecific pore-forming proteins (porins) are the major proteins of the outer membrane of Gram-negative bacteria responsible for diffusion of low-molecular-weight compounds. Nucleotide sequences of the OmpF-like porins from the pathogenic bacteria Yersinia pseudotuberculosis (YPS) and Yersinia enterocolitica (YE) were cloned and determined. Values of molecular weights (MW) and isoelectric points (IEP) calculated for these proteins (for OmpF-YPS: MW 37.7 kD, IEP 4.45; for OmpF-YE: MW 39.5 kD, IEP 4.34) are in good agreement with experimental data. The OmpF-like Yersinia porins are highly homologous to each other (83-92%) and also to the OmpF protein from Serratia marcescens (70%); the homology to the OmpF porin from E. coli is significantly lower (52-58%). Multiple alignment of the amino acid sequences of mature OmpF proteins provided the distribution of conservative amino acid residues typical for porins. Moreover, the OmpF-like porins from Yersinia are characterized by the presence of extended regions with high and low homologies, which coincide with the transmembrane domains and "external" loops, respectively, of the topological model of the OmpF porin from E. coli. By predictive methods, the secondary structure of the OmpF-like porins from Yersinia was obtained. This structure is represented by 16 beta-strands connected by short "periplasmic" and longer "external" loops with unordered structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.