Дослiджено режими роботи однофазного 4qs-перетворювача з широтно-iмпульсною модуляцiєю в складi електрорухомого складу змiнного струму. Розроблено методу визначення параметрiв ШIМ, при яких реалiзується оптимальний за критерiєм мiнiмiзацiї величини реактивної потужностi в системi «локомотив -тягова мережа» режим роботи перетворювача.Особливостями запропонованої методи є роздiлення процесу визначення оптимальних параметрiв ШIМ на 2 етапи, що дозволяє видалити з iмiтацiйної моделi непотрiбнi на даному етапi блоки та зменшити сумарний час моделювання. На першому етапi визначаються значення коефiцiєнту потужностi та струму ланки постiйного струму в усьому дiапазонi коефiцiєнтiв модуляцiї та зсуву мiж мережевим струмом та опорним синусоїдальним сигналом. Далi, з отриманого масиву даних видiляються пари значень параметрiв ШIМ, за яких реалiзується найвищiй коефiцiєнт потужностi системи «електровоз -тягова мережа», та заносяться до табличною системи завдання параметрiв ШIМ. На другому етапi визначається залежностi електричних втрат, а, отже, й ККД, та коефiцiєнту нелiнiйних спотворювань мережевого струму вiд тактової частоти перетворювачi. Визначення електричних втрат ґрунтується на обчисленнi енергiї, що була розсiяна протягом 1 с на IGBT-транзисторi та снаберному резисторi в залежностi вiд миттєвих значень струму через них. Для знаходження параметрiв ШIМ за наведеною методою розроблено iмiтацiйну модель 4qs-перетворювача, проведено iдентифiкацiю параметрiв ШIМ перетворювача електровозу для тестової задачi. Визначено, що енергетичнi показники перетворювача залежать нелiнiйно вiд трьох керуючих величин, що є параметрами ШIМ: коефiцiєнту модуляцiї, зсуву мiж мережевим струмом та опорним синусоїдальним сигналом, та тактовою частоти ШIМ. Визначено, що перетворювач з iдентифiкованими параметрами ШIМ забезпечує одиничний коефiцiєнт потужностi тягової мережi при навантаженнi бiльше 10 % вiд номiнального в режимах тяги та рекуперативного гальмування. Отримано залежнiсть електричних втрат перетворювача та коефiцiєнту нелiнiйних спотворень в тяговiй мережi вiд тактової частоти ШIМ. Визначено, що рацiональне значення тактової частоти лежить в iнтервалi 900…2000 Гц, при цьому ККД перетворювача досягає 98…95 %, коефiцiєнт нелiнiйних спотворень складає 12…5 %. Визначено, що виключення з силового кола снаберної ланки може суттєво зменшити сумарнi електричнi втрати. Встановлено, що втрати на паразитних опорах фiльтрiв незначнi, тому їх можна не враховувати в загальному балансi втратКлючовi слова: 4qs-перетворювач, електрорухомий склад, коефiцiєнт потужностi, ШIМ, iмiтацiйне моделювання, електричнi втрати
The main technical parameters of the locomotive for quarry railway transport have been evaluated. The design parameters of the locomotive have been determined and it is established that the tangential power is 6700 kW, and the traction force for the design mode is 1300 kN. The calculations of the traction characteristics of the locomotive have been performed. The procedure for determining the parameters of the locomotive operating modes during train tasks performing has been proposed, which is based on the processing of the results of traction task solving on the section of the track. It has been established that for the test section of the track a significant part of the time in the traction mode the locomotive operates with a load of 10… 25% of the nominal, therefore it has been proposed to implement the mode of movement with disconnection of traction motors. The use of an onboard energy storage system, which allows the accumulation of energy during electrodynamics braking has been proposed. The generalized scheme of traction system which allows realizing ways of increase of energy efficiency a rolling stock has been offered.
It is known that the air suspension of vehicles, in which diaphragm-type air springs are used as an elastic element, do not provide the necessary vibration damping. The reason for this is that such air springs have a relatively large passive part. As a result, a relatively small mass of compressed air crosses through the throttle installed between the air spring and the additional reservoir. This mass of air contains thermal energy, into which the energy of vibrations, which enters through the walls of the additional reservoir into the environment, has turned. This is interpreted as vibration damping, which is insufficient due to the low air mass. Therefore, hydraulic vibration dampers are installed parallel to the diaphragm air springs, which complicates and increases the cost of the vehicle. Increasing the damping properties of such air suspensions could eliminate these hydraulic vibration dampers, which would reduce costs and simplify operation. An air suspension with an improved air spring has been proposed, which has an increased effective area and a reduced "passive" capacity, an empirical formula has been built to determine its damping coefficient, as well as an expression for the stiffness coefficient. Mathematical modeling of oscillations of vehicles with different designs of pneumatic springs was carried out in order to improve their damping. The mathematical model takes into account the change in the parameters of the air spring during vibrations. The study was carried out for the diesel train DL-02. Using mathematical modeling, the effectiveness of the air suspension with an improved air spring has been proven: its damping index reaches 0.263, and the vibration damping coefficient is 45,859 kg/s, which corresponds to the values recommended for vehicles.
An overview of modern trends in updating shunting locomotives, which are based on the installation of on-board energy storage devices, multi-diesel propulsion power plants, and power plants operated on hydrogen energy sources, was carried out. The necessity to take into account the operating conditions of a shunting diesel locomotive when choosing an upgrade option is shown. The operation modes of shunting diesel locomotives during shunting operations at the Козятин-I freight station during three shifts were considered. By analyzing the data of the БІС-Р onboard system and processing the route sheets, the parameters of the operating modes were determined. Calculations of diesel engine power utilization indicators were performed, according to which it was determined that the full use of the installed diesel generator power is 7.5...8.4%, and the maximum diesel power recorded under the studied operating conditions is about 50%. The duration of work with traction loads is 49.5...68.8% of the shift time. The longest - 55...60% of the total duration of work under traction - are modes with a power of 0...50 kW. The duration of work without load is 18.1...36.9% of the duration of the shift. The shunting work performed is related to the formation and disassembly of trains, including the use of a sorting slide, as a result of which the traction power transmission operates with a low efficiency. In order to reduce the consumption of fuel and energy resources when performing shunting work, it is necessary to update the fleet of locomotives for shunting work, the characteristics of which are adapted to the operating modes. Key words: hybrid locomotive, modernization, shunting, energy efficiency, energy storage
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.