The authors report on gold nanoparticle enhancement of the gain in dyes/nanoparticles/polymer film for random lasers. Importantly, they demonstrate a lower threshold for lasing and a stronger output intensity, which depend on the nanoparticle (NP) size. By calculating the “NP scattering resonance” using Mie theory and the measured surface-plasmon resonance, we can qualitatively explain the results, suggesting that the random lasing properties are dominated by an enhanced photon scattering mechanism induced by the surface plasmons.
Articles you may be interested inFast modeling of the lowpressure capacitively coupled radiofrequency discharge based on the nonlocal approach Appl.Power dissipation measurements in a lowpressure N2 radiofrequency discharge
The wind velocity structure in the upper stratosphere, mesosphere, and lower thermosphere (MLT) is studied with the recently developed method of infrasound probing of the atmosphere. The method is based on the effect of infrasound scattering from highly anisotropic wind velocity and temperature inhomogeneities in the middle and upper atmosphere. The scattered infrasound field propagates in the acoustic shadow zones, where it is detected by microbarometers. The vertical profiles of the wind velocity fluctuations in the upper stratosphere (30–52 km) and MLT (90–140 km) are retrieved from the waveforms and travel times of the infrasound signals generated by explosive sources such as volcanoes and surface explosions. The fine‐scale wind‐layered structure in these layers was poorly observed until present time by other remote sensing methods, including radars and satellites. It is found that the MLT atmospheric layer (90–102 km) can contain extremely high vertical gradients of the wind velocity, up to 10 m/s per 100 m. The effect of a fine‐scale wind velocity structure on the waveforms of infrasound signals is studied. The vertical wave number spectra of the retrieved wind velocity fluctuations are obtained for the upper stratosphere. Despite the difference in the locations of the explosive sources all the obtained spectra show the existence of high vertical wave number spectral tail with a −3 power law decay. The obtained spectral characteristics of the wind fluctuations are necessary for improvement of gravity wave drag parameterizations for numerical weather forecast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.