This study provides new scenarios for storm time traveling ionospheric disturbance excitation and subsequent propagation at subauroral and polar latitudes. We used ground-based total electron content observations from Global Navigation Satellite System receivers combined with wide field, subauroral ionospheric plasma parameters measured with the Millstone Hill Incoherent Scatter Radar during strong September 2017 geospace storms. Observations provide the first evidence of significant influences on traveling ionospheric disturbance (TID) propagation and excitation caused by the presence of large subauroral polarization stream flow channels. Simultaneous large-and medium-scale TIDs evolved during the event in a broad subauroral and midlatitude area near dusk. Similar concurrent TIDs occurred near dawn sectors as well during a period of sustained southward Bz. Medium-scale TIDs at subauroral and midlatitudes had wave fronts aligned northwest-southeast near dusk, and northeast-southwest near dawn. These wave fronts were highly correlated with the direction of storm time large zonal plasma drift enhancements at these latitudes. At high latitudes, unexpected, predominant, and persistent storm time TIDs were identified with 2000+ km zonal wave fronts and 15% total electron content perturbation amplitudes, moving in transpolar propagation pathways from the dayside into the nightside. This propagation direction in the polar region was opposite to the normal assumption that TIDs originated in the nightside auroral region. Results suggest that significant dayside sources, such as cusp regions, can be efficient in generating transpolar TIDs during geospace storm intervals.Plain Language Summary This paper reports several new findings on the traveling ionospheric disturbances (TIDs) excited during geospace storms in 7-8 September 2017. Storm time TIDs provide pathway for momentum and energy dispersion from the solar wind-magnetosphere system to various components of the global ionosphere and thermosphere. Storm time large-scale TIDs (LSTIDs) have been identified by many studies as being initiated generally in the auroral zone where significant heating is injected, with subsequent propagation away from the source: equatorward into lower latitudes and poleward into high latitudes. Our study indicates that, during equatorward propagation, LSTIDs can encounter strong dynamic forcing at subauroral latitudes in the zonal direction. This westward velocity forcing is provided by a SAPS (subauroral polarization stream) channel and furthermore appears to be associated with the developing of medium-scale TIDs (MSTIDs). Thus, this paper provides the first causal link between these TIDs and SAPS flow channels. Concurrent LSTIDs and MSTIDs existed during the September storm in not only near dusk but also dawn sectors. In the polar cap region, conventionally anticipated poleward propagation away from the auroral zone was unexpectedly weak. In contrast, an opposite sense of transpolar propagation from the dayside into the nightside (i.e., eq...
In the present study, we document daytime total electron content (TEC) disturbances associated with medium‐scale traveling ionospheric disturbances (MSTIDs), on few chosen geomagnetically quiet days over Southern Hemisphere of Brazilian longitude sector. These disturbances are derived from TEC data obtained using Global Navigation Satellite System (GNSS) receiver networks. From the keograms and cross‐correlation maps, the TEC disturbances are identified as the MSTIDs that are propagating equatorward‐eastward, having most of their average wavelengths longer in latitude than in longitude direction. These are the important outcomes of the present study which suggest that the daytime MSTIDs over Southern Hemisphere are similar to their counterparts in the Northern Hemisphere. Another important outcome is that the occurrence characteristics of these MSTIDs and that of atmospheric gravity wave (AGW) activities in the thermosphere are found to be similar on day‐to‐day basis. This suggests a possible connection between them, confirming the widely accepted AGW forcing mechanism for the generation of these daytime MSTIDs. The source of this AGW is investigated using the Geostationary Operational Environmental Satellite system (GOES) and Constellation Observing System for Meteorology, Ionosphere, and Climate satellite data. Finally, we provided evidences that AGWs are generated by convection activities from the tropospheric region.
Global Positioning System (GPS) L1-frequency (1.575 GHz) amplitude scintillations at São José dos Campos (23.1°S, 45.8°W, dip latitude 17.3°S), located under the southern crest of the equatorial ionization anomaly, are analyzed during the Northern Hemisphere winter sudden stratospheric warming (SSW) events of 2001/2002, 2002/2003, and 2012/2013. The events occurred during a period when moderate to strong scintillations are normally observed in the Brazilian longitude sector. The selected SSW events were of moderate and major categories and under low Kp conditions. The most important result of the current study is the long-lasting (many weeks) weakening of scintillation amplitudes at this low-latitude station, compared to their pre-SSW periods. Ionosonde-derived evening vertical plasma drifts and meridional neutral wind effects inferred from total electron content measurements are consistent with the observed weakening of GPS scintillations during these SSW events. This work provides strong evidence of SSW effects on ionospheric scintillations and the potential consequences of such SSW events on Global Navigation Satellite System-based applications.
This study examines the ionospheric changes associated with the solar eclipse of 21 August 2017. The effects associated with the passage of the eclipse shadow were observed more than 1,000 km away from the totality at midlatitudes using the Millstone Hill incoherent scatter radar and digisonde. There was a 30–40% decrease in electron density, a 100‐ to 220‐K decrease in electron temperature, and a 50‐ to 140‐K decrease in ion temperature. Surprisingly, the greatest decrease in electron density occurred above 200 km. The most unexpected effect was a large 20‐ to 40‐m/s upward vertical drift observed in the topside ionosphere right after the local maximum obscuration. We suggest that this drift led to a posteclipse increase in the topside electron density.
In this work, we examine the atmospheric and ionospheric responses to the January 2013 sudden stratospheric warming (SSW) event. To examine the atmospheric and ionospheric behavior during this event, three main parameters are used (1) Total Electron Content (TEC) collected from the International Global Positioning System and from the Brazilian Network of Continuous Monitoring stations, (2) daytime E × B vertical drift derived from the magnetometers located at the equatorial station Alta Floresta (9.9°S, 55.9°W, dip latitude 1.96°) and an off-equatorial station Cuiaba (15.3°S, 56.0°W, dip latitude 7.10°), both in the Brazilian sector, (3) the mesosphere and lower thermosphere (MLT) meridional and zonal wind components measured by the Meteor Radar located at the southern midlatitude Santa Maria (29.4°S, 53.3°W, dip latitude 17.8°). We identify the anomalous variation in E × B drift based on later local-time migration of peak value with SSW days. A novel feature of the present study is the identification of the similar migration pattern in the TEC anomaly, in spite that the simultaneous solar flux increases during the SSW event. Other novel features are the amplification of the 13-16 day period in the TEC anomaly during the SSW days and simultaneous amplification of this period in the meridional and zonal wind components in the MLT region, as far as 30°S. These aspects reveal the presence of coupled atmosphere-ionosphere dynamics during the SSW event and the amplification of the lunar and/or solar tidal component, a characteristic which is recently reported from the electrojet current measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.