We report on the demonstration of MOVPE-grown single nanowire InGaN/GaN core-shell light emitting diodes (LEDs) with a transparent graphene contact for hole injection. The electrical homogeneity of the graphene-contacted LED has been assessed by electron beam induced current microscopy. By comparing graphene-contacted and metal-contacted nanowire LEDs, we show that the contact layout determines the electroluminescence spectrum. The electroluminescence changes color from green to blue with increasing injection current. High-resolution cathodoluminescence on cleaved nanowires allows the location with high precision of the origin of different emitted wavelengths and demonstrates that the blue peak originates from the emission of the radial quantum well on the m-planes, whereas the green peak arises from the In-rich region at the junction between the m-planes and the semipolar planes. The spectral behavior of the electroluminescence is understood by modeling the current distribution within the nanowire.
We report on the electron beam induced current (EBIC) microscopy and cathodoluminescence (CL) characterization correlated with compositional analysis of light emitting diodes based on core/shell InGaN/GaN nanowire arrays. The EBIC mapping of cleaved fully operational devices allows to probe the electrical properties of the active region with a nanoscale resolution. In particular, the electrical activity of the p-n junction on the m-planes and on the semi-polar planes of individual nanowires is assessed in top view and cross-sectional geometries. The EBIC maps combined with CL characterization demonstrate the impact of the compositional gradients along the wire axis on the electrical and optical signals: the reduction of the EBIC signal toward the nanowire top is accompanied by an increase of the CL intensity. This effect is interpreted as a consequence of the In and Al gradients in the quantum well and in the electron blocking layer, which influence the carrier extraction efficiency. The interface between the nanowire core and the radially grown layer is shown to produce in some cases a transitory EBIC signal. This observation is explained by the presence of charged traps at this interface, which can be saturated by electron irradiation.
Single-crystalline InN nanorods were successfully grown on c-Al 2 O 3 , GaN, Si(111), and Si(100) substrates by non-catalytic, template-free hydride metal-organic vapour phase epitaxy (H-MOVPE). It was evaluated thermodynamically and confirmed experimentally that the domain of nanorod growth lies in the vicinity of the growth-etch transition. Stable gas phase oligomer formation is suggested as the nucleation mechanism for InN nanoparticle generation. Dislocation-free, high-quality InN nanorods with [00.1] growth axis were formed via an apparent solid-vapour growth mechanism. The nanorod diameter, density, and orientation were controlled by growth temperature, substrate selection, and HCl/TMIn and N/In inlet molar ratios. S Supplementary data are available from stacks.
Single crystal InN nanorods were successfully grown on c-Al2O3 by hydride-metalorganic vapor phase epitaxy. The measured resistance of bare InN nanorods does not change upon exposure to hydrogen ambient. The addition of sputter-deposited clusters of Pt onto the surface of the InN nanorods, however, produced a significant change in the measured room temperature resistance. The measured resistance changed systematically by 0.5%–12% as the ambient hydrogen concentration in N2 was varied between 10 and 250 ppm after 15 min exposure time. Importantly, a relatively low power consumption of ∼0.3mW was measured under these conditions. There was no response at room temperature to O2, N2O, or NH3 exposures.
Core/shell InGaN/GaN nanowire light emitting diodes (LEDs) based on vertically standing single nanowires and nanowire arrays were fabricated and extensively characterized. The emission of single wire LEDs with the same conformal contact geometry as the array device exhibits the same broadening as the array LED electroluminescence, which proves an excellent wire-to-wire homogeneity. The electroluminescence spectra present two peaks corresponding to the m-plane InGaN quantum well (blue emission) and to an In-rich region at the m-plane-semipolar plane junction (green emission), in agreement with structural characterizations. Modification of the contact layout and a post-growth plasma treatment enable strongly suppressing the unwanted green electroluminescence while increasing the intensity in the blue spectral range for the same injected electrical power. Electron beam induced current mapping proves the inhibition of the electrical activity of the top part of the nanowire after plasma treatment. Inductively coupled plasma etching of the In-rich region permits one to completely remove the green emission for all injection currents, but loss of intensity in the blue spectral range is observed. Selectively contacting the m-plane and plasma treatment of the top part of the nanowire appear as a viable solution for controlling the color of core/shell nanowire LEDs with an inhomogeneous indium composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.