The use of genetic markers to aid in selection decisions to improve carcass and growth characteristics is of great interest to the beef industry. However, it is important to examine potential antagonistic interactions with fertility in cows before widespread application of marker-assisted selection. The objective of the current experiment was to examine the influence of 2 commercially available markers currently in use for improving carcass traits, the myostatin (MSTN) F94L and μ-calpain (CAPN1) 316 and 4751 polymorphisms, on heifer development and reproductive performance. In Exp. 1, beef heifers (n = 146) were evaluated for growth and reproductive traits over a 3-yr period to determine if these polymorphisms influenced reproductive performance. In Exp. 2, heifers representing the 2 homozygous genotypes for the MSTN F94L polymorphism were slaughtered on d 4 of the estrous cycle and reproductive tracts were collected for morphological examination. In Exp. 1, there was a tendency (P = 0.06) for birth BW to be affected by MSTN with the Leu allele increasing birth BW in an additive fashion. Additionally, MSTN significantly affected the proportion of pubertal heifers by the start of the breeding season (P < 0.05) with the Leu allele additively decreasing the proportion pubertal; however, this did not result in a delay in conception or a decrease in pregnancy rates during the first breeding season (P > 0.15). The GT haplotype of CAPN1, which was previously associated with decreased meat tenderness, was associated with an additive decrease in birth BW of the first calf born to these heifers (P < 0.05). In Exp. 2, there were no differences between the MSTN genotypes for gross or histological morphology of the anterior pituitary, uterus, or ovaries (P > 0.05). From these results, we concluded that the MSTN F94L and CAPN1 polymorphisms can be used to improve carcass traits without compromising fertility in beef heifers. The influence of these markers on cow performance and herd life remains to be determined. While the delay in puberty associated with the MSTN F94L polymorphism did not negatively impact reproductive performance in heifers, caution should be used when combining this marker with other markers for growth or carcass traits until the potential interactions are more clearly understood.
It has been repeatedly demonstrated that estrous expression before fixed-time AI (TAI) results in increased pregnancy success. Therefore, the objective of this experiment was to determine if preblastocyst embryonic developmental characteristics differed from heifers that did or did not exhibit estrus before TAI. Beef heifers (n = 113) were synchronized using the 5-d CO-Synch + controlled internal drug release device with TAI on d 0. Before TAI, estrous expression was assessed twice daily. On d 6, single embryos were collected and visually evaluated to determine quality (International Embryo Transfer Society standards; 1-4, in which 1 = excellent/good and 4 = degenerate) and stage (1-9, in which 1 = unfertilized and 9 = expanded hatched blastocyst). Embryos were stained and evaluated to determine number of dead blastomeres, number of total blastomeres, and number of accessory sperm. Estrous expression before TAI did not affect the percent of embryos recovered (P = 0.59), number of dead cells (P = 0.99), or number of total cells (P = 0.25). However, heifers that exhibited estrus had increased mean (P = 0.03) and median accessory sperm numbers and (P = 0.01) percent live cells when compared with nonestrus heifers. Heifers that exhibited estrus also produced embryos that had a more advanced stage (P = 0.03) and improved quality (P = 0.04) when compared with those heifers not exhibiting estrus. When all heifers were evaluated, there was no correlation between circulating concentration of estradiol at TAI and embryo quality or embryo stage. There was a significant correlation between accessory sperm numbers and embryo quality (P = 0.01) and embryo stage (P < 0.01), such that as accessory sperm numbers increased, embryo quality and stage increased. In conclusion, exhibiting estrus before TAI resulted in improved embryo quality and advanced embryo stage on d 6 and increased the number of accessory sperm associated with the embryo.
Peripubertal caloric restriction increases primordial follicle numbers at breeding, which may improve reproductive potential. Our hypothesis was that feed restriction was changing primordial follicle number through stimulation of follicle formation via leptin, roundabout axon guidance receptor, homolog 4 (), or or through inhibition of follicle activation via anti-Müllerian hormone (). Heifers ( = 30) were fed a ration consisting of 30% alfalfa hay, 69.8% corn silage, and 0.2% salt as DM. Heifers received the control diet for 42 d before an initial 6 heifers were ovariectomized at 8 mo of age. The remaining 24 heifers were divided into 2 treatment groups. Controls were offered 97.9 g DM/kg BW over the entire feeding period. Stair-step heifers received 67.4 g DM/kg BW for 84 d. Following the 84-d restriction, heifers were stepped up to receive 118.9 g DM/kg BW over a 15-d period and were held at this feeding level 68 d. At the end of the feed restriction (11 mo of age), ovaries were collected from 6 heifers per treatment, and at the end of the refeeding period (13 mo of age), ovaries were collected from 6 heifers per treatment. Plasma leptin concentrations were greater in control heifers than in stair-step heifers at 11 mo of age ( < 0.0001). In histological sections, stair-step heifers had more primordial follicles ( = 0.03) than control heifers at 13 mo of age. There was no difference in secondary or antral follicle numbers between dietary treatment groups or ages. Relative abundance of mRNA in ovarian cortex of control heifers was greater at 13 mo than at 11 mo or before feed restriction (8 mo; = 0.01). Relative abundance of mRNA in stair-step heifers at 13 mo was greater than before feed restriction ( = 0.02) and at 11 mo did not differ from 8 or 13 mo ( = 0.70). Relative abundance of mRNA in the ovarian cortex followed a similar pattern, being greater in stair-step heifers at 11 mo compared with control heifers ( = 0.001). At 13 mo, mRNA did not differ between treatments ( = 0.30). Abundance of mRNA in the ovarian cortex did not change due to dietary treatment or age ( > 0.10). In conclusion, developing heifers on a stair-step compensatory growth scheme resulted in larger ovarian reserve before the onset of breeding, which may have beneficial effects on increasing reproductive lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.