We investigated whether down-regulation of arginine decarboxylase (ADC) activity and concomitant changes in polyamine levels result in changes in the expression of downstream genes in the polyamine pathway. We generated transgenic rice (Oryza sativa L.) plants in which the rice adc gene was down-regulated by expression of its antisense oat (Avena sativa L.) ortholog. Plants expressed the oat mRNA adc transcript at different levels. The endogenous transcript was down-regulated in five out of eight plant lineages we studied in detail. Reduction in the steady-state rice adc mRNA levels resulted in a concomitant decrease in ADC activity. The putrescine and spermidine pool was significantly reduced in plants with lower ADC activity. Expression of the rice ornithine decarboxylase (odc), S-adenosylmethionine decarboxylase (samdc) and spermidine synthase (spd syn) transcripts was not affected. We demonstrate that even though levels of the key metabolites in the pathway were compromised, this did not influence steady-state transcription levels of the other genes involved in the pathway. Our results provide an insight into the different regulatory mechanisms that control gene expression in the polyamine biosynthetic pathway in plants by demonstrating that the endogenous pathway is uncoupled from manipulations that modulate polyamine levels by expression of orthologous transgenes.
We investigated how over-expression of a cDNA for human ornithine decarboxylase (odc) affects the polyamine pools in transgenic rice. We further investigated tissue-specific expression patterns and product accumulation levels of the transgene driven by either constitutive or seed-specific promoters. Our results indicate that: (1) whereas the expression of a heterologous arginine decarboxylase (adc) cDNA in rice resulted in increased putrescine and spermine levels only in seeds, plants engineered to express odc cDNA exhibited significant changes in the levels of all three major polyamines in seeds and also in vegetative tissues (leaves and roots); (2) there was no linear correlation between odc mRNA levels, ODC enzyme activity and polyamine accumulation, suggesting that control of the polyamine pathway in plants is more complex than in mammalian systems; (3) ODC activity and polyamine changes varied in different tissues, indicating that the pathway is regulated in a tissue-specific manner. Our results suggest that ODC rather than ADC is responsible for the regulation of putrescine synthesis in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.