In this paper, we demonstrate for the first time that insulative dielectrophoresis can induce size-dependent trajectories of DNA macromolecules. We experimentally use ͑48.5 kbp͒ and T4GT7 ͑165.6 kbp͒ DNA molecules flowing continuously around a sharp corner inside fluidic channels with a depth of 0.4 m. Numerical simulation of the electrokinetic force distribution inside the channels is in qualitative agreement with our experimentally observed trajectories. We discuss a possible physical mechanism for the DNA polarization and dielectrophoresis inside confining channels, based on the observed dielectrophoresis responses due to different DNA sizes and various electric fields applied between the inlet and the outlet. The proposed physical mechanism indicates that further extensive investigations, both theoretically and experimentally, would be very useful to better elucidate the forces involved at DNA dielectrophoresis. When applied for size-based sorting of DNA molecules, our sorting method offers two major advantages compared to earlier attempts with insulative dielectrophoresis: Its continuous operation allows for highthroughput analysis, and it only requires electric field strengths as low as ϳ10 V / cm.
We present a novel continuous electrodeless separation structure based on dielectrophoresis (DEP). The non-uniform electric field is generated by applying voltage over a circular channel. Driven by the electro-osmotic flow, the particles with different dielectric properties move continuously to the different location across the channel as they flow due to the different DEP force, thus continuously separated into the different outlets. The finite element modelling and simulation results show it can separate particles of different dielectric properties in both spatial and time domain. Compared with the previously reported dieletrophoretic separation using electrode arrays [1-10], this structure is more easily fabricated, mechanically robust and chemically inert. And compared with the previously reported electrodeless dielectrophoretic separation methods [11-14], this structure achieves higher throughput and continuous separation.
In this paper, we present the analysis of electroosmotic flow in a branched U-turn nanofluidic device, which we developed for detection and sorting of single molecules. The device, where the channel depth is only 150 nm, is designed to optically detect fluorescence from a volume as small as 270 attolitres (al) with a common wide-field fluorescent setup. We use distilled water as the liquid, in which we dilute 110 nm fluorescent beads employed as tracer-particles. Quantitative imaging is used to characterize the pathlines and velocity distribution of the electroosmotic flow in the device. Due to the device's complex geometry, the electroosmotic flow cannot be solved analytically. Therefore we use numerical flow simulation to model our device. Our results show that the deviation between measured and simulated data can be explained by the measured Brownian motion of the tracer-particles, which was not incorporated in the simulation.
We present a study on the far-field patterns of light transmitted through sub-wavelength metallic hole-arrays. Spectral imaging measurements are used here on hole arrays for the first time. It provides both spatial and spectral information of the transmission in far-field. The visibility of the images, measured in two illumination modes: Köhler and collimated, is calculated for different planes in and out of focus. The transmission under collimated illumination reveals that 75% of the beam if non-divergent. The results are in agreement with the low divergence measured by Lezec [Science 297, 820 (2002)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.