The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that promotes catabolic and inhibits anabolic pathways. However, the role of AMPK in adipocytes is poorly understood. We show that transgenic expression of mitochondrial uncoupling protein 1 in white fat, which induces obesity resistance in mice, is associated with depression of cellular energy charge, activation of AMPK, downregulation of adipogenic genes, and increase in lipid oxidation. Activation of AMPK may explain the complex metabolic changes in adipose tissue of these animals and our results support a role for adipocyte AMPK in the regulation of storage of body fat.
As indicated by in vitro studies, both lipogenesis and lipolysis in adipocytes depend on the cellular ATP levels. Ectopic expression of mitochondrial uncoupling protein 1 (UCP1) in the white adipose tissue of the aP2-Ucp1 transgenic mice reduced obesity induced by genetic or dietary manipulations. Furthermore, respiratory uncoupling lowered the cellular energy charge in adipocytes, while the synthesis of fatty acids (FA) was inhibited and their oxidation increased. Importantly, the complex metabolic changes triggered by ectopic UCP1 were associated with the activation of AMP-activated protein kinase (AMPK), a metabolic master switch, in adipocytes. Effects of several typical treatments that reduce adiposity, such as administration of leptin, b-adrenoceptor agonists, bezafibrate, dietary n-3 polyunsaturated FA or fasting, can be compared with a phenotype of the aP2-Ucp1 mice. These situations generally lead to the upregulation of mitochondrial UCPs and suppression of the cellular energy charge and FA synthesis in adipocytes. On the other hand, FA oxidation is increased. Moreover, it has been shown that AMPK in adipocytes can be activated by adipocyte-derived hormones leptin and adiponectin, and also by insulin-sensitizes thiazolidinediones. Thus, it is evident that metabolism of adipose tissue itself is important for the control of body fat content and that the cellular energy charge and AMPK are involved in the control of lipid metabolism in adipocytes. The reciprocal link between synthesis and oxidation of FA in adipocytes represents a prospective target for the new treatment strategies aimed at reducing obesity.
Body fat content is controlled, at least in part, by energy charge of adipocytes. In vitro studies indicated that lipogenesis as well as lipolysis depend on cellular ATP levels. Respiratory uncoupling may, through the depression of ATP synthesis, control lipid metabolism of adipose cells. Expression of some uncoupling proteins (UCP2 and UCP5) as well as other protonophoric transporters can be detected in the adipose tissue. Expression of other UCPs (UCP1 and UCP3) can be induced by pharmacological treatments that reduce adiposity. A negative correlation between the accumulation of fat and the expression of UCP2 in adipocytes was also found. Ectopic expression of UCP1 in the white fat of aP2-Ucp1 transgenic mice mitigated obesity induced by genetic or dietary factors. In these mice, changes in lipid metabolism of adipocytes were associated with the depression of intracellular energy charge. Recent data show that AMP-activated protein kinase may be involved in the complex changes elicited by respiratory uncoupling in adipocytes. Changes in energy metabolism of adipose tissue may mediate effects of treatments directed against adiposity, dyslipidemia, and insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.