The paper presents a novel three-dimensional quasi-continuous shape sensor based on an FBG array inscribed by femtosecond laser pulses into a 7-core optical fiber with a polyimide protective coating. The measured bending sensitivity of individual FBGs ranges from 0.046 nm/m −1 to 0.049 nm/m −1. It is shown that the sensor allows for reconstructing 2and 3-dimensional shapes with high accuracy. Due to the high value of the core aperture and individual calibration of each FBG we were able to measure the smallest reported bending radii down to 2.6 mm with a record accuracy of ∼1%. Moreover, we investigate the magnitude of the errors of curves reconstruction and errors associated with measurement of curvature radii in the range from 2.6 to 500 mm. The main factors affecting the accuracy of measurements are also discussed. The temperature resistance of both the inscribed FBG structures and of the protective coating, along with the high mechanical strength of the polyimide, makes it possible to use the sensor in harsh environments or in medical and composite material applications.
We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.
An all-silica photonic bandgap fiber with a cladding index difference of approximately 2 % and diameter-to-pitch ratio (d/wedge) of 0.12 was fabricated and studied. To our knowledge, this is the first report on the properties of photonic bandgap fiber with such a small d/wedge. The fiber is single-mode in the fundamental bandgap. The mode field diameter in the 1000-1200 nm wavelength range is 19-20 microm. The minimum loss in the same range is 20 dB/km for a 30-cm bending diameter. In our opinion, all-silica photonic bandgap fiber can serve as a potential candidate for achieving single-mode propagation with a large mode area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.