Spectral photoluminescence emitted from the front compared to the rear side of a semiconductor layer like a photovoltaic absorber is shown to exhibit significant differences in the highenergy regime. This arises from the excess-carrier depth profile and the absorption of photoluminescence photons during their way through the semiconductor layer depending on photon energy, distance to the absorber exit, and absorption coefficient.We get access to surface-recombination velocities, the minority-carrier diffusion length, the excess-carrier depth profile and the optical band gap by fitting photoluminescence spectra via numerical modeling. The numerical modeling is based on an one-dimensional three-layer system that includes multiple reflection. This procedure is exemplarily demonstrated for a thin-film system based on Cu(In,Ga)Se 2 .
We analyze Cu(In,Ga)Se2 absorbers with a scanning near-field optical microscope (SNOM) by photoluminescence (PL). Such measurements allow one to extract local fluctuations of the integral PL yield, the quasi-Fermi level splitting, and the material composition in the submicron range. However, the experimental findings depend strongly on the surface roughness of the absorber: If the surface is rough, artifact-prone correlations between surface contour and PL features measured by SNOM can be found that complicate the study of recombination effects. For smooth surfaces, such correlations no longer exist and the influence of grain boundaries on the integral PL yield and the quasi-Fermi level splitting is revealed. The method also allows a detailed determination of the local band gaps in neighboring grains and their spatial variation inside, and thus of possibly local changes in chemical composition of different grains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.