We report a novel technique for quantum well intermixing which is simple, reliable and low cost, and appears universally applicable to a wide range of material systems. The technique involves the deposition of a thin layer of sputtered SiO2 and a subsequent high temperature anneal. The deposition process appears to generate point defects at the sample surface, leading to an enhanced intermixing rate and a commensurate reduction in the required anneal temperature. Using appropriate masking it is possible to completely suppress the intermixing process, enabling large differential band gap shifts (over 100 meV) to be obtained across a single wafer.
Precise control over local optical and electrical characteristics across a semiconductor wafer is a fundamental requirement for the fabrication of photonic integrated circuits. Quantum well intermixing is one approach, where the band gap of a quantum well structure is modified by intermixing the well and barrier layers. Here we report recent progress in the development of intermixing techniques for long wavelength applications, discussing two basic techniques. The first is a class of laser disordering techniques which take place in the solid state. The second is a novel intermixing technique involving plasma induced damage. Both techniques enable large band gap shifts to be achieved in standard GaInAsP multiple quantum well laser structures. The potential of both techniques for photonic integration is further demonstrated by the fabrication and characterisation of extended cavity lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.