Sonochemistry is a branch dealing with effects of chemical as well as sound wave as the name suggest. The sound waves are ultrasonic, i.e., high frequency waves (20 kHz can extent to 10 MHz and above) beyond the range of a human ear (20-20 kHz). Sonochemistry technology is incorporated into both mechanistic and synthetic studies. An important event called acoustic cavitation take place where microbubbles grow and under the influence of ultrasonic waves they collapse. Sonoluminescence is one of the outcomes of cavitation which leads to homogeneous sonochemistry. Sonochemistry has also entered one of the major developing field biotechnology from basic activation of enzyme to preparation of catalyst. It is also used for the fabrication of nanomaterial which comes under the liquid phase method. One disadvantage of nanomaterial preparation is the amount of time it consumes to show results. This can be eliminated when biotechnological research is conducted in conjunction with sonochemical application. Latest research results have proved that ultrasound irradiation is both time and cost-effective approach for any bio-processes like enhancement of emulsification and trans-esterification of fatty acids for bio-fuel products. Bio-process monitoring and dewatering of sludge have also been accelerated. This chapter contains introductory information on sonochemistry.
This study aimed to introduce antibacterial nanofibers, produced by electrospinning as a novel technique in constructing nanostructured materials. The large size and less bioavailability due to impenetrable (or partial/improper penetration) membrane has resulted in production of nanofibers. These nano sized Fibers were successful in delivering the active ingredients and served the purpose of using plants for its cause. Some of the active ingredients include antimicrobial compounds that are incorporated into various products to prevent unwanted microbial growth. As higher bioavailability is one of the most crucial parameters when it comes to medical solutions, electro spun nanofibers are highly preferred. This method is preferable for organic polymers as they have high flexibility, high specific surface area and surface functionalization. Electrospinning technology has been used for the fabrication and assembly of nanofibers into membranes, which have extended the range of potential applications in the biomedical, environmental protection, nanosensor, electronic/optical, protective clothing fields and various other fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.