We made nanometer-scale (gate length of 30 nm) organic thin-film transistors using a self-assembled monolayer (2 nm thick) as a gate insulator. The fabrication steps combine electron-beam lithography and lift-off techniques for the deposition of both metal electrodes and organic semiconductors with a chemical approach (self-assembly of organic molecules) to fabricate the gate insulator. Good performances of these transistors (with a record subthreshold slop of 350 mV/decade and a cutoff frequency of 20 kHz) and low-voltage operation (<2 V) are demonstrated down to a gate length of 200 nm. A gate voltage modulation of the source-to-drain tunnel current is demonstrated for the 30 nm gate length device.
In this letter, two organic thin-film transistors with SiO2 and ferroelectric PbZrTiO3 (PZT) gate insulator are compared. The fabrication of the devices is described and their electrical properties estimated. The PZT-based devices show better performance: Low driving voltage, high Ion/Ioff ratio, etc. Moreover, a memory effect is reported in correlation with ferroelectric properties of PZT thin films.
High performance thin-film transistors (TFT) made of conducting oligomers are obtained when the organic films are well ordered at a molecular level. Highly ordered films are obtained provided that oligomers have a sufficient mobility on the substrate surface during film formation. One possible way to fulfill such a condition is to evaporate oligomers on heated substrates [1,2]. In this work, we suggest that a high surface mobility is obtained by a chemical functionalization of the silicon dioxide surface, and the corresponding improvements of the TFT performances are evidenced. A self-assembled monolayer of octadecyltrichlorosilane (OTS) was deposited on the SiO2 by chemisorption from solution before the evaporation of sexithiophene film. Room temperature current-voltage measurements indicate that the presence of the OTS monolayer improves TFT performances : threshold voltage is decreased, subthreshold slope is decreased, a high current ratio Ion/Ioff is obtained for a reduced gate voltage excursion, the fieldeffect mobility is slightly increased. We have also fabricated and characterized a nanometer scale organic FET (gate length = 50 nm) made of 6T films and only with a self-assembled monolayer as the insulating film between the degenerated silicon substrate (gate) and the conducting channel (no thick SiO2, we call it « oxide-free » organic FET). Performances of this nanometer size organic FETs are the following : subthreshold slope of 0.35V/dec, threshold voltage of −1.3V, effective mobility of 2×10−4 cm2/V.s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.