Background: Care models can affect the clinical outcome of patients with rheumatic and musculoskeletal diseases. Objective: We aimed to compare how an innovative model of a rheumatoid arthritis disease-management program can improve the clinical outcomes of patients compared to a conventional assessment approach. Methods: We performed a retrospective analysis of real-world data from clinical records of a cohort of 5078 patients diagnosed with rheumatoid arthritis who were followed up at the Center of Excellence in Rheumatoid Arthritis vs the clinical outcomes reported in the Colombian National Registry of Rheumatoid Arthritis. Results: We found significant differences in the diagnosis and follow-up between the specialized Center program and the usual care reported by the Colombian National Registry (p<0.005), including the evaluation of rheumatoid factor, Anti-citrullinated antibodies Disease Activity Score, Health Assessment Questionnaire, number of visits to the rheumatologist, and clinical outcomes measured by the level of disease activity. In addition, when comparing the Center's clinical outcomes-from baseline to the last follow-up, we found an improvement in the level of disease activity, with patients classified in remission increasing from 20.8% to 58.5% (p<0.005), and a reduction in those with high disease activity from 18% to 4.7% (p<0.005). Conclusion: Real-world evidence showed that patients with rheumatoid arthritis who underwent follow-up under an innovative disease-management model improved their clinical outcomes compared with those patients in a conventional assessment program. These results could suggest a way of improving health policies for patients with rheumatoid arthritis.
Compartmentalization of animal and human skeletal muscle by multiple motor nerve branches known as the neuromuscular compartment (NMC) has been observed primarily in muscles that participate in a plane of motion. In this context, the peroneus longus muscle contributes to eversion and plantarflexion of the ankle and the presence of NMCs has been reported. However, no research has reported the selective activation of the compartments of the peroneus longus during the performance of different ankle movements. The purpose of this research was to determine the contribution of peroneus longus NMCs, through multi-channel surface electromyography (sEMG), to eversion and plantarflexion movements. Multi-channel sEMG was recorded from the peroneus longus muscle by using an electrode grid during eversion and plantarflexion of the ankle at 10%, 30%, 50%, and 70% of maximal voluntary isometric contraction (MVIC). The root mean square and displacement of the center of mass position in the X (COMx) and Y (COMy) components were calculated. The primary finding was that eversion showed significantly higher sEMG amplitude than plantarflexion in the posterior compartment in low, moderate, and high percentages of MVIC. However, no significant difference in sEMG amplitude was observed in the anterior compartment between eversion and plantarflexion. In addition, a posterior displacement of the COMx in eversion compared to plantarflexion in all MVIC percentages, with greater topographic distancing of the COMx at higher levels of activation. In conclusion, the peroneus longus muscle presented NMCs; the anterior compartment contributed to both eversion and plantarflexion movements, whereas the posterior compartment mainly contributed to the eversion movement of the ankle in low, moderate, and high percentages of MVIC.
Background: Different techniques have been described for percutaneous Achilles tendon rupture repair, but no biomechanical evaluation has been performed separately for proximal and distal suturing techniques. The purpose of this study was to biomechanically analyze proximal versus distal percutaneous Achilles suture configurations during cyclic loading and load to failure. Methods: A simulated, midsubstance rupture was created 6 cm proximal to the calcaneal insertion in fresh-frozen cadaveric Achilles tendons. Fifteen proximal specimens were divided into 3 groups: (A1) triple locking technique, (A2) Bunnell-type technique, and (A3) double Bunnell-type technique. Twelve distal specimens were divided into 2 groups: (B1) triple nonlocking technique and (B2) oblique technique. Repairs were subjected to cyclic testing and load to failure. Load to failure, cause of failure, and tendon elongation were evaluated. Results: None of the proximal specimens and 7/12 of the distal ones failed in cyclic testing. The proximal fixation groups demonstrated significantly more strength than the distal groups ( P = .001), achieving up to 710 N of failure load in Group A3. Groups B1and B2 failed on average at 380 N with no difference between them ( P > .05). The majority of all repairs failed in the suture-tendon interface. Distal groups had more elongation during cyclic testing (13.7 mm) than proximal groups (9.4 mm) ( P = .02). Conclusion: The distal fixation site in this Achilles tendon repair was significantly weaker than the proximal fixation site. A proximal modified suture configuration increased resistance to cyclic loading and load to failure significantly. Clinical Relevance: A modification can be suggested to improve strength of the Achilles repair.
Un importante porcentaje de las lesiones de miembros inferiores ha sido vinculado a la técnica de carrera, en particular, al contacto inicial con retropié (RP) o antepié (AP). Sin embargo, existe limitada evidencia de la actividad electromiográfica (EMG) para ambas condiciones. El objetivo de este estudio fue comparar la amplitud EMG en miembros inferiores al utilizar técnicas de RP vs AP durante la carrera. Trece corredores fueron evaluado a una velocidad de trote autoseleccionada en dos condiciones: contacto inicial con RP y AP. Se registró la actividad mioeléctrica del recto femoral (RF), bíceps femoral (BF), tibial anterior (TA), gastrocnemio medial (GM) y lateral (GL). Se consideró la amplitud promedio de la EMG en 10 ciclos de carrera, normalizados a la contracción voluntaria máxima. Los resultados destacan una mayor activación significativa de los músculos GM y GL en el contacto AP durante la fase de apoyo, balanceo y en todo el ciclo de carrera. Adicionalmente, el TA presentó una mayor activación durante la fase de vuelo y el 100% del ciclo de carrera para la condición RP. No se encontraron otras diferencias significativas. En conclusión, el uso de la técnica AP incrementa la actividad muscular de GM y GL, posiblemente asociado a una mayor absorción del impacto durante la fase de apoyo. Por otro lado, el TA incrementa su actividad con RP, lo que podría implicar un mayor control previo al contacto inicial. La técnica de carrera se presenta como una condición modificable según situaciones de rendimiento o patología.Abstract. Running technique has an impact on lower limb injuries, particularly the initial contact pattern such as rearfoot (RF) or forefoot (FF). However, there is limited evidence of the electromyographic (EMG) activity for both conditions. The aim of this study was to compare the lower limb muscles EMG amplitude between RF and FF techniques during running. Thirteen runners were evaluated at a self-selected running speed under two conditions: initial contact with RF and FF. The myoelectric activity of the rectus femoris (RE), biceps femoris (BF), tibialis anterior (TA), medial gastrocnemius (GM) and lateral (GL) were analysed. The EMG amplitudes of 10 running cycles were averaged and normalized to the maximum voluntary contraction. The results included a significantly higher activation of GM and GL muscles for the FF condition during the stance phase, balance and the entire running cycle. In addition, TA showed higher activation during the swing phase and the 100% running cycle for the RP condition. No other significant differences were found. In conclusion, FF technique increases GM and GL myoelectric activity, possibly associated with a higher impact absorption during the stance phase. On the other hand, TA increases its activity for RF condition which may imply a greater neuromuscular control prior to initial contact. Finally, the running technique is presented as a modifiable condition which can be changed to enhance performance or in pathologic circumstances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.