Sub-microsecond time-resolved step-scan FT-IR spectroscopy is applied to the study of the molecular changes and their dynamics occurring during the KL-L transition of bacteriorhodopsin. The time-resolved difference spectra are compared to the static low-temperature BR → K and BR → L difference spectra. Our data show that the protein part in KL is similar to that in K. However, the chromophore is more relaxed and is differently twisted. A strong hydrogen-out-of-plane (HOOP) mode in KL is assigned to the 15-HOOP. As is the case for L, a strong deformation of the C14-C15 single bond is deduced for KL. Evidence of a KL → L equilibrium is presented. In N, a 15-HOOP mode similar to that in L is observed, indicating very similar twists of the C14-C15 single bond. This observation excludes major contributions of this deformation to the reduction of the pKa of the Schiff base in L. From the spectral changes, important molecular events are deduced that occur in the transitions to KL, L, and N.
In this report, from time-resolved step-scan Fourier transform infrared investigations from 15 ns to 160 ms, we provide evidence for the subsequent rise of three different M states that differ in their structures. The first state rises with approximately 3 microseconds to only a small percentage. Its structure as judged from amide I/II bands differs in small but well-defined aspects from the L state. The next M state, which appears in approximately 40 microseconds, has almost all of the characteristics of the "late" M state, i.e., it differs considerably from the first one. Here, the L left arrow over right arrow M equilibrium is shifted toward M, although some percentage of L still persists. In the last M state (rise time approximately 130 microseconds), the equilibrium is shifted toward full deprotonation of the Schiff base, and only small additional structural changes take place. In addition to these results obtained for unbuffered conditions or at pH 7, experiments performed at lower and higher pH are presented. These results are discussed in terms of the molecular changes postulated to occur in the M intermediate to allow the shift of the L/M equilibrium toward M and possibly to regulate the change of the accessibility of the Schiff base necessary for effective proton pumping.
Abstract— In order to assign the proton acceptor for Schiff base deprotonation in bacteriorhodopsin to a specific Asp residue, the photoreaction of the Asp85 → Glu mutant, as expressed in Halobacterium sp. GRB, was investigated by static low‐temperature and time‐resolved infrared difference spec‐troscopy. Measurements were also performed on the mutant protein labeled with [4‐13C]Asp which allowed discrimination between Asp and Glu residues. 14,15‐di13C‐retinal was incorporated to distinguish amide‐II absorbance changes from changes of the ethylenic mode of the chromophore. In agreement with earlier UV‐VIS measurements, our data show that from both the 540 and 610 nm species present in a pH‐dependent equilibrium, intermediates similar to K and L can be formed. The 14 ms time‐resolved spectrum of the 540 nm species shows that a glutamic acid becomes protonated in the M‐like intermediate, whereas the comparable difference spectrum of the 610 nm species demonstrates that in the initial state a glutamic acid is already protonated. In conjunction with earlier observations of protonation of an Asp residue in wild‐type M, the data provide direct evidence that the proton acceptor in the deprotonation reaction of the Schiff base is Asp85.
Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These vibrational data can be primarily interpreted in terms of the degree of twisting of the C14-C15 retinal bond. Such twisting may be accompanied by changes in the adjacent protein. Other smaller, but nonetheless clear, spectral changes indicate that alterations along the retinal polyene chain also occur. The changes in the retinal structure are preliminary to the deprotonation of the Schiff base nitrogen during the formation of M-412. The time constant for the ps/ns K-590 transformation is estimated from the amplitude change of four vibrational bands in the HOOP region to be 40-70 ns.
The hypothesis was tested whether in bacteriorhodopsin (BR) the reduction of the steric interaction between the 9-methyl group of the chromophore all-trans-retinal and the tryptophan at position 182 causes the same changes as observed in the photocycle of 9-demethyl-BR. For this, the photocycle of the mutant W182F was investigated by time-resolved UV-vis and pH measurements and by static and time-resolved FT-IR difference spectroscopy. We found that the second half of the photocycle was similarly distorted in the two modified systems: based on the amide-I band, the protonation state of D96, and the kinetics of proton uptake, four N intermediates could be identified, the last one having a lifetime of several seconds; no O intermediate could be detected; the proton uptake showed a pronounced biphasic time course; and the pKa of group(s) on the cytoplasmic side in N was reduced from 11 in wild type BR to around 7.5. In contrast to 9-demethyl-BR, in the W182F mutant the first part of the photocycle does not drastically deviate from that of wild type BR. The results demonstrate the importance of the steric interaction between W182 and the 9-methyl group of the retinal in providing tight coupling between chromophore isomerization and the late proton transfer steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.