The structural, magnetic, and magnetocaloric properties of epitaxial Ni-Co-Mn-Al thin films with different compositions have been studied. The films were deposited on MgO(001) substrates by co-sputtering on heated substrates. All films show a martensitic transformation, where the transformation temperatures are strongly dependent on the composition. The structure of the martensite phase is shown to be 14M. The metamagnetic martensitic transformation occurs from strongly ferromagnetic austenite to weakly magnetic martensite. The structural properties of the films were investigated by atomic force microscopy and temperature dependent x-ray diffraction. Magnetic and magnetocaloric properties were analyzed using temperature dependent and isothermal magnetization measurements. We find that Ni 41 Co 10.4 Mn 34.8 Al 13.8 films show giant inverse magnetocaloric effects with magnetic entropy change of 17.5 J kg −1 K −1 for μ 0 H = 5 T.
Materials hosting magnetic skyrmions at room temperature could enable compact and energetically-efficient storage such as racetrack memories, where information is coded by the presence/absence of skyrmions forming a moving chain through the device. The skyrmion Hall effect leading to their annihilation at the racetrack edges can be suppressed, for example, by antiferromagnetically-coupled skyrmions. However, avoiding modifications of the inter-skyrmion distances remains challenging. As a solution, a chain of bits could also be encoded by two different solitons, such as a skyrmion and a chiral bobber, with the limitation that it has solely been realized in B20-type materials at low temperatures. Here, we demonstrate that a hybrid ferro/ferri/ferromagnetic multilayer system can host two distinct skyrmion phases at room temperature, namely tubular and partial skyrmions. Furthermore, the tubular skyrmion can be converted into a partial skyrmion. Such systems may serve as a platform for designing memory applications using distinct skyrmion types.
Narrow-band terahertz emission from coherently excited spin precession in metallic ferrimagnetic Mn3-xGa Heusler alloy nanofilms has been observed. The efficiency of the emission, per nanometer film thickness, is comparable or higher than that of classical laser-driven terahertz sources based on optical rectification. The center frequency of the emission from the films can be tuned precisely via the film composition in the range of 0.20–0.35 THz, making this type of metallic film a candidate for efficient on-chip terahertz emitters. Terahertz emission spectroscopy is furthermore shown to be a sensitive probe of magnetic properties of ultra-thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.