This paper presents gate level delay dependent probabilistic fault models for CMOS circuits operating at subthreshold and near-threshold supply voltages. A bottom-up approach has been employed: SPICE simulations have been used to derive higher level error models implemented using Verilog HDL. HSPICE Monte-Carlo simulations show that the delay dependent probabilistic nature of these faults is due to the process-voltage-temperature (PVT) variations which affect the circuits operating at very low supply voltages. For gate level error analysis, mutant based simulated fault injection (SFI) techniques have been employed for combinational netlist reliability analysis. Four types of gate level fault models, with different accuracies, are proposed. Our findings show that the proposed SFI method presents a 2X-5X simulation time overhead compared to the simulation of the gold circuit; with respect to SPICE analysis, the proposed method requires three orders of magnitude less simulation time.
International audienceThis paper introduces a new theoretical framework, akin to the use of imprecise message storage in Low Density Parity Check (LDPC) decoders, which is seen as an enabler for cost-effective hardware designs. The proposed framework is the one of Non-Surjective Finite Alphabet Iterative Decoders (NS-FAIDs), and it is shown to provide a unified approach for several designs previously proposed in the literature. NS-FAIDs are optimized by density evolution for WiMAX irregular LDPC codes and we show they provide different trade-offs between hardware complexity and decoding performance. In particular, we derive a set of 27 NS-FAIDs that provide decoding gains up to 0.36 dB, while yielding a memory / interconnect reduction up to 25% / 30% compared to the Min-Sum decoder
Abstract-This paper introduces a new approach to costeffective, high-throughput hardware designs for Low Density Parity Check (LDPC) decoders. The proposed approach, called Non-Surjective Finite Alphabet Iterative Decoders (NS-FAIDs), exploits the robustness of message-passing LDPC decoders to inaccuracies in the calculation of exchanged messages, and it is shown to provide a unified framework for several designs previously proposed in the literature. NS-FAIDs are optimized by density evolution for regular and irregular LDPC codes, and are shown to provide different trade-offs between hardware complexity and decoding performance. Two hardware architectures targeting high-throughput applications are also proposed, integrating both Min-Sum (MS) and NS-FAID decoding kernels. ASIC post synthesis implementation results on 65nm CMOS technology show that NS-FAIDs yield significant improvements in the throughput to area ratio, by up to 58.75% with respect to the MS decoder, with even better or only slightly degraded error correction performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.